Clouds at Arctic Atmospheric Observatories. Part I: Occurrence and Macrophysical Properties

Matthew D. Shupe * Cooperative Institute for Research in Environmental Science, and NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Matthew D. Shupe in
Current site
Google Scholar
PubMed
Close
,
Von P. Walden University of Idaho, Moscow, Idaho

Search for other papers by Von P. Walden in
Current site
Google Scholar
PubMed
Close
,
Edwin Eloranta University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Edwin Eloranta in
Current site
Google Scholar
PubMed
Close
,
Taneil Uttal NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Taneil Uttal in
Current site
Google Scholar
PubMed
Close
,
James R. Campbell Naval Research Laboratory, Monterey, California

Search for other papers by James R. Campbell in
Current site
Google Scholar
PubMed
Close
,
Sandra M. Starkweather ** Polar Field Services, Inc., Littleton, Colorado

Search for other papers by Sandra M. Starkweather in
Current site
Google Scholar
PubMed
Close
, and
Masataka Shiobara National Institute of Polar Research, Tokyo, Japan

Search for other papers by Masataka Shiobara in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Cloud observations over the past decade from six Arctic atmospheric observatories are investigated to derive estimates of cloud occurrence fraction, vertical distribution, persistence in time, diurnal cycle, and boundary statistics. Each observatory has some combination of cloud lidar, radar, ceilometer, and/or interferometer for identifying and characterizing clouds. By optimally combining measurements from these instruments, it is found that annual cloud occurrence fractions are 58%–83% at the Arctic observatories. There is a clear annual cycle wherein clouds are least frequent in the winter and most frequent in the late summer and autumn. Only in Eureka, Nunavut, Canada, is the annual cycle shifted such that the annual minimum is in the spring with the maximum in the winter. Intersite monthly variability is typically within 10%–15% of the all-site average. Interannual variability at specific sites is less than 13% for any given month and, typically, is less than 3% for annual total cloud fractions. Low-level clouds are most persistent at the observatories. The median cloud persistence for all observatories is 3–5 h; however, 5% of cloud systems at far western Arctic sites are observed to occur for longer than 100 consecutive hours. Weak diurnal variability in cloudiness is observed at some sites, with a daily minimum in cloud occurrence near solar noon for those seasons for which the sun is above the horizon for at least part of the day.

Corresponding author address: Matthew D. Shupe, R/PSD3, 325 Broadway, Boulder, CO 80305. Email: matthew.shupe@colorado.edu

Abstract

Cloud observations over the past decade from six Arctic atmospheric observatories are investigated to derive estimates of cloud occurrence fraction, vertical distribution, persistence in time, diurnal cycle, and boundary statistics. Each observatory has some combination of cloud lidar, radar, ceilometer, and/or interferometer for identifying and characterizing clouds. By optimally combining measurements from these instruments, it is found that annual cloud occurrence fractions are 58%–83% at the Arctic observatories. There is a clear annual cycle wherein clouds are least frequent in the winter and most frequent in the late summer and autumn. Only in Eureka, Nunavut, Canada, is the annual cycle shifted such that the annual minimum is in the spring with the maximum in the winter. Intersite monthly variability is typically within 10%–15% of the all-site average. Interannual variability at specific sites is less than 13% for any given month and, typically, is less than 3% for annual total cloud fractions. Low-level clouds are most persistent at the observatories. The median cloud persistence for all observatories is 3–5 h; however, 5% of cloud systems at far western Arctic sites are observed to occur for longer than 100 consecutive hours. Weak diurnal variability in cloudiness is observed at some sites, with a daily minimum in cloud occurrence near solar noon for those seasons for which the sun is above the horizon for at least part of the day.

Corresponding author address: Matthew D. Shupe, R/PSD3, 325 Broadway, Boulder, CO 80305. Email: matthew.shupe@colorado.edu

Save
  • Campbell, J. R., D. L. Hlavka, E. J. Welton, C. J. Flynn, D. D. Turner, J. D. Spinhirne, V. S. Scott, and I. H. Hwang, 2002: Full-time eye-safe cloud and aerosol lidar observations at Atmospheric Radiation Measurement Program sites: Instruments and data processing. J. Atmos. Oceanic Technol., 19 , 431442.

    • Search Google Scholar
    • Export Citation
  • Campbell, J. R., K. Sassen, and E. J. Welton, 2008: Elevated cloud and aerosol layer retrievals from micropulse lidar signal profiles. J. Atmos. Oceanic Technol., 25 , 685700.

    • Search Google Scholar
    • Export Citation
  • Clothiaux, E. E., G. G. Mace, T. P. Ackerman, T. J. Kane, J. D. Spinhirne, and V. S. Scott, 1998: An automated algorithm for detection of hydrometeor returns in micropulse lidar data. J. Atmos. Oceanic Technol., 15 , 10351042.

    • Search Google Scholar
    • Export Citation
  • Clothiaux, E. E., T. P. Ackerman, G. G. Mace, K. P. Moran, R. T. Marchand, M. Miller, and B. E. Martner, 2000: Objective determination of cloud heights and radar reflectivities using a combination of active remote sensors at the ARM CART sites. J. Appl. Meteor., 39 , 645665.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., 1986: Interactions among turbulence, radiation, and microphysics in Arctic stratus clouds. J. Atmos. Sci., 43 , 90106.

  • Curry, J. A., W. B. Rossow, D. Randall, and J. L. Schramm, 1996: Overview of Arctic cloud and radiation characteristics. J. Climate, 9 , 17311764.

    • Search Google Scholar
    • Export Citation
  • Dong, X., and G. G. Mace, 2003: Arctic stratus cloud properties and radiative forcing derived from ground-based data collected at Barrow, Alaska. J. Climate, 16 , 445461.

    • Search Google Scholar
    • Export Citation
  • Eloranta, E. W., 2005: High spectral resolution lidar. Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, K. Weitkamp, Ed., Springer-Verlag 143–163.

    • Search Google Scholar
    • Export Citation
  • Herman, G. F., and J. A. Curry, 1984: Observational and theoretical studies of solar radiation in Arctic stratus clouds. J. Climate Appl. Meteor., 23 , 524.

    • Search Google Scholar
    • Export Citation
  • Hobbs, J. V., and A. L. Rangno, 1990: Rapid development of high ice particle concentrations in small Polar maritime cumuliform clouds. J. Atmos. Sci., 47 , 27102722.

    • Search Google Scholar
    • Export Citation
  • Hobbs, J. V., and A. L. Rangno, 1998: Microstructures of low- and middle-level clouds over the Beaufort Sea. Quart. J. Roy. Meteor. Soc., 124 , 20352071.

    • Search Google Scholar
    • Export Citation
  • Huschke, R. E., 1969: Arctic cloud statistics from ‘air-calibrated’ surface weather observations. RAND Corporation Memo. RM-6173-PR, Santa Monica, CA, 79 pp.

    • Search Google Scholar
    • Export Citation
  • Intrieri, J. M., M. D. Shupe, T. Uttal, and B. J. McCarty, 2002: An annual cycle of Arctic cloud characteristics observed by radar and lidar at SHEBA. J. Geophys. Res., 107 , 8030. doi:10.1029/2000JC000423.

    • Search Google Scholar
    • Export Citation
  • Jayaweera, K. O. L. F., and T. Ohtake, 1973: Concentration of ice crystals in Arctic stratus clouds. J. Rech. Atmos., 7 , 199207.

  • Kay, J. E., T. L’Ecuyer, A. Gettelman, G. Stephens, and C. O’Dell, 2008: The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum. Geophys. Res. Lett., 35 , L08503. doi:10.1029/2008GL033451.

    • Search Google Scholar
    • Export Citation
  • Knuteson, R. O., and Coauthors, 2004: Atmospheric Emitted Radiance Interferometer. Part I: Instrument design. J. Atmos. Oceanic Technol., 21 , 17631776.

    • Search Google Scholar
    • Export Citation
  • Liljegren, J. C., 1994: Two-channel microwave radiometer for observations of total column precipitable water vapor and cloud liquid water path. Preprints, Fifth Symp. on Global Change Studies, Nashville, TN, Amer. Meteor. Soc., 262–269.

    • Search Google Scholar
    • Export Citation
  • Lubin, D., and A. M. Vogelmann, 2006: A climatologically significant aerosol longwave indirect effect in the Arctic. Nature, 439 , 453456.

    • Search Google Scholar
    • Export Citation
  • MacDonald, A. E., 2005: A global profiling system for improved weather and climate prediction. Bull. Amer. Meteor. Soc., 86 , 17471764.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., G. Zhang, M. R. Poellot, G. L. Kok, R. McCoy, T. P. Tooman, and A. J. Heymsfield, 2007: Ice properties of single layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment (M-PACE)—Part 1: Observations. J. Geophys. Res., 112 , D24201. doi:10.1029/2007JD008633.

    • Search Google Scholar
    • Export Citation
  • Moran, K. P., B. E. Martner, M. J. Post, R. A. Kropfli, D. C. Welsh, and K. B. Widener, 1998: An unattended cloud-profiling radar for use in climate research. Bull. Amer. Meteor. Soc., 79 , 443455.

    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., J. A. Richter-Menge, K. F. Jones, and B. Light, 2008: Sunlight, water, and ice: Extreme Arctic sea ice melt during the summer of 2007. Geophys. Res. Lett., 35 , L11501. doi:10.1029/2008GL034007.

    • Search Google Scholar
    • Export Citation
  • Pinto, J. O., 1998: Autumnal mixed-phase cloudy boundary layers in the Arctic. J. Atmos. Sci., 55 , 20162038.

  • Putnins, P., 1970: The climate of Greenland. Climates of the Polar Regions, S. Orvig, Ed., World Survey of Climatology, Vol. 14, Elsevier, 3–128.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72 , 220.

  • Rossow, W. B., A. W. Walker, and L. C. Garder, 1993: Comparison of ISCCP and other cloud amounts. J. Climate, 6 , 23942418.

  • Sassen, K., 2005: Dusty ice clouds over Alaska. Nature, 434 , 456.

  • Sassen, K., and B. S. Cho, 1992: Subvisual-thin cirrus lidar dataset for satellite verification and climatological research. J. Appl. Meteor., 31 , 12751285.

    • Search Google Scholar
    • Export Citation
  • Schweiger, A. J., J. Zhang, R. W. Lindsay, and M. Steele, 2008: Did unusually sunny skies help drive the record sea ice minimum of 2007? Geophys. Res. Lett., 35 , L10503. doi:10.1029/2008GL033463.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., 2011: Clouds at Arctic atmospheric observatories. Part II: Thermodynamic phase characteristics. J. Appl. Meteor. Climatol., 50 , 645661.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., T. Uttal, S. Y. Matrosov, and A. S. Frisch, 2001: Cloud water contents and hydrometeor sizes during the FIRE-Arctic Clouds Experiment. J. Geophys. Res., 106 , 1501515028.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., T. Uttal, and S. Y. Matrosov, 2005: Arctic cloud microphysics retrievals from surface-based remote sensors at SHEBA. J. Appl. Meteor., 44 , 15441562.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., S. Y. Matrosov, and T. Uttal, 2006: Arctic mixed-phase cloud properties derived from surface-based sensors at SHEBA. J. Atmos. Sci., 63 , 697711.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 2005: Cloud feedbacks in the climate system: A critical review. J. Climate, 18 , 237273.

  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83 , 17711790.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., 2005: Arctic mixed-phase cloud properties from AERI-lidar observations: Algorithm and results from SHEBA. J. Appl. Meteor., 44 , 427444.

    • Search Google Scholar
    • Export Citation
  • Uttal, T., and Coauthors, 2002: Surface heat budget of the Arctic Ocean. Bull. Amer. Meteor. Soc., 83 , 255275.

  • Vowinkel, E., and S. Orvig, 1970: The climate of the north polar basin. Climates of the Polar Regions, S. Orvig, Ed., World Survey of Climatology, Vol. 14, Elsevier, 129–152.

    • Search Google Scholar
    • Export Citation
  • Wang, X., and J. R. Key, 2003: Recent trends in Arctic surface, cloud, and radiation properties from space. Science, 299 , 17251728.

  • Wang, X., and J. R. Key, 2005: Arctic surface, cloud, and radiation properties based on AVHRR Polar Pathfinder dataset. Part I: Spatial and temporal characteristics. J. Climate, 18 , 25582574.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G., C. J. Hahn, J. London, R. M. Chervin, and R. L. Jenne, 1988: Global distribution of total cloud cover and cloud type amounts over the ocean. NCAR Tech. Note NCAR/TN-317+STR, 212 pp.

    • Search Google Scholar
    • Export Citation
  • Welton, E. J., and J. R. Campbell, 2002: Micropulse lidar signal uncertainties. J. Atmos. Oceanic Technol., 19 , 20892094.

  • Winker, D. M., J. R. Pelon, and M. P. McCormick, 2003: The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds. Lidar Remote Sensing for Industry and Environment Monitoring III, U. N. Singh, T. Itabe, and Z. Liu, Eds., International Society for Optical Engineering (SPIE Proceedings Vol. 4893), 1–11.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3529 1961 732
PDF Downloads 1256 239 22