Clouds at Arctic Atmospheric Observatories. Part II: Thermodynamic Phase Characteristics

Matthew D. Shupe Cooperative Institute for Research in Environmental Science, and NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Matthew D. Shupe in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Cloud phase defines many cloud properties and determines the ways in which clouds interact with other aspects of the climate system. The occurrence fraction and characteristics of clouds distinguished by their phase are examined at three Arctic atmospheric observatories. Each observatory has the basic suite of instruments that are necessary to identify cloud phase, namely, cloud radar, depolarization lidar, microwave radiometer, and twice-daily radiosondes. At these observatories, ice clouds are more prevalent than mixed-phase clouds, which are more prevalent than liquid-only clouds. Cloud ice occurs 60%–70% of the time over a typical year, at heights up to 11 km. Liquid water occurs at temperatures above −40°C and is increasingly more likely as temperatures increase. Within the temperature range from −40° to −30°C, liquid water occurs in 3%–5% of the observed cloudiness. Liquid water is found higher in the atmosphere when accompanied by ice; there are few liquid-only clouds above 3 km, although liquid in mixed-phase clouds occurs at heights up to about 7–8 km. Regardless of temperature or height, liquid water occurs 56% of the time at Barrow, Alaska, and at a western Arctic Ocean site, but only 32% of the time at Eureka, Nunavut, Canada. This significant difference in liquid occurrence is due to a relatively dry lower troposphere during summer at Eureka in addition to warmer cloud temperatures with more persistent liquid water layers at the far western locations. The most persistent liquid clouds at these locations occur continuously for more than 70 h in the autumn and more than 30 h in the winter. Ice clouds persist for much longer than do liquid clouds at Eureka and occur more frequently in the winter season, leading to a total cloud occurrence annual cycle that is distinct from the other observatories.

Corresponding author address: Matthew D. Shupe, R/PSD3, 325 Broadway, Boulder, CO 80305. Email: matthew.shupe@colorado.edu

Abstract

Cloud phase defines many cloud properties and determines the ways in which clouds interact with other aspects of the climate system. The occurrence fraction and characteristics of clouds distinguished by their phase are examined at three Arctic atmospheric observatories. Each observatory has the basic suite of instruments that are necessary to identify cloud phase, namely, cloud radar, depolarization lidar, microwave radiometer, and twice-daily radiosondes. At these observatories, ice clouds are more prevalent than mixed-phase clouds, which are more prevalent than liquid-only clouds. Cloud ice occurs 60%–70% of the time over a typical year, at heights up to 11 km. Liquid water occurs at temperatures above −40°C and is increasingly more likely as temperatures increase. Within the temperature range from −40° to −30°C, liquid water occurs in 3%–5% of the observed cloudiness. Liquid water is found higher in the atmosphere when accompanied by ice; there are few liquid-only clouds above 3 km, although liquid in mixed-phase clouds occurs at heights up to about 7–8 km. Regardless of temperature or height, liquid water occurs 56% of the time at Barrow, Alaska, and at a western Arctic Ocean site, but only 32% of the time at Eureka, Nunavut, Canada. This significant difference in liquid occurrence is due to a relatively dry lower troposphere during summer at Eureka in addition to warmer cloud temperatures with more persistent liquid water layers at the far western locations. The most persistent liquid clouds at these locations occur continuously for more than 70 h in the autumn and more than 30 h in the winter. Ice clouds persist for much longer than do liquid clouds at Eureka and occur more frequently in the winter season, leading to a total cloud occurrence annual cycle that is distinct from the other observatories.

Corresponding author address: Matthew D. Shupe, R/PSD3, 325 Broadway, Boulder, CO 80305. Email: matthew.shupe@colorado.edu

Save
  • Boudala, F. S., G. A. Isaac, S. Cober, and Q. Fu, 2004: Liquid fraction in stratiform mixed-phase clouds from in situ observations. Quart. J. Roy. Meteor. Soc., 130 , 29192931.

    • Search Google Scholar
    • Export Citation
  • Campbell, J. R., D. L. Hlavka, E. J. Welton, C. J. Flynn, D. D. Turner, J. D. Spinhirne, V. S. Scott, and I. H. Hwang, 2002: Full-time eye-safe cloud and aerosol lidar observations at Atmospheric Radiation Measurement Program sites: Instruments and data processing. J. Atmos. Oceanic Technol., 19 , 431442.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., C. L. Parkinson, R. Gersten, and L. Stock, 2008: Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett., 35 , L01703. doi:10.1029/2007GL031972.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., F. G. Meyer, L. F. Radke, C. A. Brock, and E. E. Ebert, 1990: Occurrence and characteristics of lower tropospheric ice crystals in the Arctic. Int. J. Climatol., 10 , 749764.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., W. B. Rossow, D. Randall, and J. L. Schramm, 1996: Overview of Arctic cloud and radiation characteristics. J. Climate, 9 , 17311764.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., J. O. Pinto, T. Benner, and M. Tschudi, 1997: Evolution of the cloudy boundary layer during the autumnal freezing of the Beaufort Sea. J. Geophys. Res., 102 , 1385113860.

    • Search Google Scholar
    • Export Citation
  • Eloranta, E. W., 2005: High spectral resolution lidar. Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, K. Weitkamp, Ed., Springer-Verlag 143–163.

    • Search Google Scholar
    • Export Citation
  • Frisch, A. S., C. W. Fairall, and J. B. Snider, 1995: Measurements of stratus cloud and drizzle parameters in ASTEX with a Ka-band Doppler radar and a microwave radiometer. J. Atmos. Sci., 52 , 27882799.

    • Search Google Scholar
    • Export Citation
  • Gayet, J.-F., S. Asano, A. Yamazaki, A. Uchiyama, A. Sinyuk, O. Jourdan, and F. Auriol, 2002: Two case studies of winter continental-type water and mixed-phase stratocumuli over the sea. 1. Microphysical and optical properties. J. Geophys. Res., 107 , 4569. doi:10.1029/2001JD001106.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., and D. Morris, 1996: The sensitivity of climate simulations to the specification of mixed phase clouds. Climate Dyn., 12 , 641651.

    • Search Google Scholar
    • Export Citation
  • Hahn, C. J., S. G. Warren, and J. London, 1995: The effects of moonlight on observation of cloud cover at night and application to cloud climatology. J. Climate, 8 , 14291446.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., and P. Q. Olsson, 2001: On the potential influence of ice nuclei on surface-forced marine stratocumulus cloud dynamics. J. Geophys. Res., 106 , 2747327484.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., T. Reisen, W. R. Cotton, and S. M. Kreidenweis, 1999: Cloud resolving simulations of Arctic stratus. Part II: Transition-season clouds. Atmos. Res., 51 , 4575.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., L. M. Miloshevich, A. Slingo, K. Sassen, and D. O’C. Starr, 1991: An observational and theoretical study of highly supercooled altocumulus. J. Atmos. Sci., 48 , 923945.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and A. L. Rangno, 1998: Microstructures of low and middle-level clouds over the Beaufort Sea. Quart. J. Roy. Meteor. Soc., 124 , 20352071.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., P. N. Francis, H. Flentje, A. J. Illingworth, M. Quante, and J. Pelon, 2003a: Characteristics of mixed-phase clouds. Part I: Lidar, radar, and aircraft observations from CLARE ’98. Quart. J. Roy. Meteor. Soc., 129 , 20892116.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., A. J. Illingworth, E. J. O’Connor, and J. P. V. Poiares Baptista, 2003b: Characteristics of mixed-phase clouds. Part II: A climatology from ground-based lidar. Quart. J. Roy. Meteor. Soc., 129 , 21172134.

    • Search Google Scholar
    • Export Citation
  • Intrieri, J. M., and M. D. Shupe, 2004: Characteristics and radiative effects of diamond dust over the western Arctic Ocean region. J. Climate, 17 , 29532960.

    • Search Google Scholar
    • Export Citation
  • Intrieri, J. M., M. D. Shupe, T. Uttal, and B. J. McCarty, 2002: An annual cycle of Arctic cloud characteristics observed by radar and lidar at SHEBA. J. Geophys. Res., 107 , 8030. doi:10.1029/2000JC000423.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., W. R. Cotton, J. O. Pinto, J. A. Curry, and M. J. Weissbluth, 2000: Cloud resolving simulations of mixed-phase Arctic stratus observed during BASE: Sensitivity to concentration of ice crystals and large-scale heat and moisture advection. J. Atmos. Sci., 57 , 21052117.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., T. L’Ecuyer, A. Gettelman, G. Stephens, and C. O’Dell, 2008: The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum. Geophys. Res. Lett., 35 , L08503. doi:10.1029/2008GL033451.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., G. A. Isaac, S. G. Cober, J. W. Strapp, and J. Hallett, 2003: Microphysical characterization of mixed-phase clouds. Quart. J. Roy. Meteor. Soc., 129 , 3955.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., B. A. Baker, C. G. Schmitt, and T. L. Jensen, 2001: An overview of microphysical properties of Arctic clouds observed in May and July 1998 during FIRE ACE. J. Geophys. Res., 106 , (D14). 1498915014.

    • Search Google Scholar
    • Export Citation
  • Liljegren, J. C., 1994: Two-channel microwave radiometer for observations of total column precipitable water vapor and cloud liquid water path. Preprints, Fifth Symp. on Global Change Studies, Nashville, TN, Amer. Meteor. Soc., 262–269.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., and J. Feichter, 2005: Global indirect aerosol effects: A review. Atmos. Chem. Phys., 5 , 715737.

  • Marsham, J. H., S. Dobbie, and R. J. Hogan, 2006: Evaluation of a large-eddy model simulation of a mixed-phase altocumulus cloud using microwave radiometer, lidar and Doppler radar data. Quart. J. Roy. Meteor. Soc., 132 , 16931715.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and S. G. Cober, 2004: Single-scattering properties of mixed-phase Arctic clouds at solar wavelengths: Impacts on radiative transfer. J. Climate, 17 , 37993813.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., G. Zhang, M. R. Poellot, G. L. Kok, R. McCoy, T. Tooman, A. Fridlind, and A. J. Heymsfield, 2007: Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment: 1. Observations. J. Geophys. Res., 111 , D24201. doi:10.1029/2007JD008633.

    • Search Google Scholar
    • Export Citation
  • Miloshevich, L., V. Holger, D. Whiteman, and T. Leblanc, 2009: Accuracy assessment and correction of Vaisala RS92 radiosonde water vapor measurements. J. Geophys. Res., 114 , D11305. doi:10.1029/2008JD011565.

    • Search Google Scholar
    • Export Citation
  • Moran, K. P., B. E. Martner, M. J. Post, R. A. Kropfli, D. C. Welsh, and K. B. Widener, 1998: An unattended cloud-profiling radar for use in climate research. Bull. Amer. Meteor. Soc., 79 , 443455.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., M. D. Shupe, and J. A. Curry, 2003: Modeling clouds observed at SHEBA using a bulk microphysics parameterization implemented into a single-column model. J. Geophys. Res., 108 , 4255. doi:10.1029/2002JD002229.

    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., J. A. Richter-Menge, K. F. Jones, and B. Light, 2008: Sunlight, water, and ice: Extreme Arctic sea ice melt during the summer of 2007. Geophys. Res. Lett., 35 , L11501. doi:10.1029/2008GL034007.

    • Search Google Scholar
    • Export Citation
  • Pinto, J. O., 1998: Autumnal mixed-phase cloudy boundary layers in the Arctic. J. Atmos. Sci., 55 , 20162038.

  • Pinto, J. O., J. A. Curry, and J. M. Intrieri, 2001: Cloud–aerosol interactions during autumn over Beaufort Sea. J. Geophys. Res., 106 , (D14). 1507715097.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic, 954 pp.

  • Rauber, R. M., and L. O. Grant, 1986: The characteristics and distribution of cloud water over the mountains of northern Colorado during winter storms. Part II: Spatial distributions and microphysical characteristics. J. Climate Appl. Meteor., 25 , 489504.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. Butterworth-Heinemann, 290 pp.

  • Rotstayn, L. D., B. F. Ryan, and J. J. Katzfey, 2000: A scheme for calculation of the liquid fraction in mixed-phase stratiform clouds in large-scale models. Mon. Wea. Rev., 128 , 10701088.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., 1984: Deep orographic cloud structure and composition derived from comprehensive remote sensing measurements. J. Climate Appl. Meteor., 23 , 568583.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., and B. S. Cho, 1992: Subvisual-thin cirrus lidar dataset for satellite verification and climatological research. J. Appl. Meteor., 31 , 12751285.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., 2007: A ground-based multisensory cloud phase classifier. Geophys. Res. Lett., 34 , L22809. doi:10.1029/2007GL031008.

  • Shupe, M. D., and J. M. Intrieri, 2004: Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle. J. Climate, 17 , 616628.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., P. Kollias, S. Y. Matrosov, and T. L. Schneider, 2004: Deriving mixed-phase cloud properties from Doppler radar spectra. J. Atmos. Oceanic Technol., 21 , 660670.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., T. Uttal, and S. Y. Matrosov, 2005: Arctic cloud microphysics retrievals from surface-based remote sensors at SHEBA. J. Appl. Meteor., 44 , 15441562.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., S. Y. Matrosov, and T. Uttal, 2006: Arctic mixed-phase cloud properties derived from surface-based sensors at SHEBA. J. Atmos. Sci., 63 , 697711.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., V. P. Walden, E. Eloranta, T. Uttal, J. R. Campbell, S. M. Starkweather, and M. Shiobara, 2011: Clouds at Arctic atmospheric observatories. Part I: Occurrence and macrophysical properties. J. Appl. Meteor. Climatol., 50 , 626644.

    • Search Google Scholar
    • Export Citation
  • Stamnes, K., R. G. Ellingson, J. A. Curry, J. E. Walsh, and B. D. Zak, 1999: Review of science issues, deployment strategy, and status for the ARM North Slope of Alaska–Adjacent Arctic Ocean climate research site. J. Climate, 12 , 4663.

    • Search Google Scholar
    • Export Citation
  • Sun, Z., and K. P. Shine, 1994: Studies of the radiative properties of ice and mixed-phase clouds. Quart. J. Roy. Meteor. Soc., 120 , 111137.

    • Search Google Scholar
    • Export Citation
  • Sun, Z., and K. P. Shine, 1995: Parameterization of ice cloud radiative properties and its application to the potential climatic importance of mixed-phase clouds. J. Climate, 8 , 18741888.

    • Search Google Scholar
    • Export Citation
  • Tjernstrom, M., J. Sedlar, and M. D. Shupe, 2008: How well do regional climate models reproduce radiation and clouds in the Arctic? An evaluation of ARCMIP simulations. J. Climate Appl. Meteor., 47 , 24052422.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., S. A. Ackerman, B. A. Baum, H. E. Revercomb, and P. Yang, 2003: Cloud phase determination using ground-based AERI observations at SHEBA. J. Appl. Meteor., 42 , 701715.

    • Search Google Scholar
    • Export Citation
  • Twomey, S. A., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34 , 11491152.

  • Uttal, T., and Coauthors, 2002: Surface heat budget of the Arctic Ocean. Bull. Amer. Meteor. Soc., 83 , 255275.

  • Vaillancourt, P. A., A. Tremblay, S. G. Cober, and G. A. Isaac, 2003: Comparison of aircraft observations with mixed-phase cloud simulations. Mon. Wea. Rev., 131 , 656671.

    • Search Google Scholar
    • Export Citation
  • Verlinde, J., and Coauthors, 2007: The Mixed-Phase Arctic Cloud Experiment (M-PACE). Bull. Amer. Meteor. Soc., 88 , 205220.

  • Vowinkel, E., and S. Orvig, 1970: The climate of the north polar basin. Climates of the Polar Regions, S. Orvig, Ed., World Survey of Climatology, Vol. 14, Elsevier, 129–152.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G., C. J. Hahn, J. London, R. M. Chervin, and R. L. Jenne, 1988: Global distribution of total cloud cover and cloud type amounts over the ocean. NCAR Tech. Note NCAR/TN-317+STR, 212 pp.

    • Search Google Scholar
    • Export Citation
  • Westwater, E. R., Y. Han, M. D. Shupe, and S. Y. Matrosov, 2001: Analysis of integrated cloud liquid and precipitable water vapor retrievals from microwave radiometers during SHEBA. J. Geophys. Res., 106 , 1509915112.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and U. Lohmann, 2003: Sensitivity of single column model simulations of Arctic springtime clouds to different cloud cover and mixed phase cloud parameterization. J. Geophys. Res., 108 , 4439. doi:10.1029/2002JD003136.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 836 310 36
PDF Downloads 692 209 30