Diurnal Cycle of Thermally Driven Cross-Basin Winds in Arizona’s Meteor Crater

Manuela Lehner University of Utah, Salt Lake City, Utah

Search for other papers by Manuela Lehner in
Current site
Google Scholar
PubMed
Close
,
C. David Whiteman University of Utah, Salt Lake City, Utah

Search for other papers by C. David Whiteman in
Current site
Google Scholar
PubMed
Close
, and
Sebastian W. Hoch University of Utah, Salt Lake City, Utah

Search for other papers by Sebastian W. Hoch in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Cross-basin winds produced by asymmetric insolation of the crater sidewalls occur in Arizona’s Meteor Crater on days with weak background winds. The diurnal cycle of the cross-basin winds is analyzed together with radiation, temperature, and pressure measurements at the crater sidewalls for a 1-month period. The asymmetric irradiation causes horizontal temperature and pressure gradients across the crater basin that drive the cross-basin winds near the crater floor. The horizontal temperature and pressure gradients and wind directions change as the sun moves across the sky, with easterly winds in the morning and westerly winds in the evening. A case study of 12 October 2006 further illustrates the obtained relation between these parameters for an individual day. The occurrence of an elevated cross-basin flow on 23 October 2006 is shown to relate to the presence of an elevated inversion layer.

Corresponding author address: Manuela Lehner, Dept. of Atmospheric Sciences, University of Utah, 135 S 1460 E, Rm. 819, Salt Lake City, UT 84112-0110. Email: manuela.lehner@utah.edu

Abstract

Cross-basin winds produced by asymmetric insolation of the crater sidewalls occur in Arizona’s Meteor Crater on days with weak background winds. The diurnal cycle of the cross-basin winds is analyzed together with radiation, temperature, and pressure measurements at the crater sidewalls for a 1-month period. The asymmetric irradiation causes horizontal temperature and pressure gradients across the crater basin that drive the cross-basin winds near the crater floor. The horizontal temperature and pressure gradients and wind directions change as the sun moves across the sky, with easterly winds in the morning and westerly winds in the evening. A case study of 12 October 2006 further illustrates the obtained relation between these parameters for an individual day. The occurrence of an elevated cross-basin flow on 23 October 2006 is shown to relate to the presence of an elevated inversion layer.

Corresponding author address: Manuela Lehner, Dept. of Atmospheric Sciences, University of Utah, 135 S 1460 E, Rm. 819, Salt Lake City, UT 84112-0110. Email: manuela.lehner@utah.edu

Save
  • Anquetin, S., C. Guilbaud, and J.-P. Chollet, 1998: The formation and destruction of inversion layers within a deep valley. J. Appl. Meteor., 37 , 15471560.

    • Search Google Scholar
    • Export Citation
  • Bader, D. C., and C. D. Whiteman, 1989: Numerical simulation of cross-valley plume dispersion during the morning transition period. J. Appl. Meteor., 28 , 652664.

    • Search Google Scholar
    • Export Citation
  • Colette, A., F. K. Chow, and R. L. Street, 2003: A numerical study of inversion-layer breakup and the effects of topographic shading in idealized valleys. J. Appl. Meteor., 42 , 12551272.

    • Search Google Scholar
    • Export Citation
  • Defant, F., 1949: Zur Theorie der Hangwinde, nebst Bemerkungen zur Theorie der Berg- und Talwinde. Arch. Meteor. Geophys. Bioklimatol., A1 , 421450.

    • Search Google Scholar
    • Export Citation
  • Egger, J., 1981: Thermally forced circulations in a valley. Geophys. Astrophys. Fluid Dyn., 17 , 255279.

  • Gleeson, T. A., 1951: On the theory of cross-valley winds arising from differential heating of the slopes. J. Meteor., 8 , 398405.

  • Gohm, A., and Coauthors, 2009: Air pollution transport in an Alpine valley: Results from airborne and ground-based observations. Bound.-Layer Meteor., 131 , 441463.

    • Search Google Scholar
    • Export Citation
  • Gudiksen, P. H., and D. L. Shearer, 1989: The dispersion of atmospheric tracers in nocturnal drainage flows. J. Appl. Meteor., 28 , 602608.

    • Search Google Scholar
    • Export Citation
  • Hennemuth, B., 1986: Thermal asymmetries and cross-valley circulation in a small Alpine valley. Bound.-Layer Meteor., 36 , 371394.

  • Hennemuth, B., and H. Schmidt, 1985: Wind phenomena in the Dischma Valley during DISKUS. Arch. Meteor. Geophys. Bioklimatol., B35 , 361387.

    • Search Google Scholar
    • Export Citation
  • Hoch, S. W., and C. D. Whiteman, 2010: Topographic effects on the surface radiation balance in and around Arizona’s Meteor Crater. J. Appl. Meteor. Climatol., 49 , 11141128.

    • Search Google Scholar
    • Export Citation
  • Kring, D. A., 2007: Guidebook to the Geology of Barringer Meteorite Crater, Arizona (aka Meteor Crater): Fieldguide for the 70th Annual Meeting of the Meteoritical Society. LPI Contribution 1355, Lunar and Planetary Institute, Houston, TX, 150 pp.

    • Search Google Scholar
    • Export Citation
  • Lehner, M., and A. Gohm, 2010: Idealised simulations of daytime pollution transport in a steep valley and its sensitivity to thermal stratification and surface albedo. Bound.-Layer Meteor., 134 , 327351.

    • Search Google Scholar
    • Export Citation
  • MacHattie, L. B., 1968: Kananaskis valley winds in summer. J. Appl. Meteor., 7 , 348352.

  • Matzinger, N., M. Andretta, E. van Gorsel, R. Vogt, A. Ohmura, and M. W. Rotach, 2003: Surface radiation budget in an Alpine valley. Quart. J. Roy. Meteor. Soc., 129 , 877895.

    • Search Google Scholar
    • Export Citation
  • Moll, E., 1935: Aerologische Untersuchung periodischer Gebirgswinde in V-förmigen Alpentälern. Beitr. Phys. Atmos., 22 , 177199.

  • Orgill, M. M., 1989: Early morning ventilation of a gaseous tracer from a mountain valley. J. Appl. Meteor., 28 , 636651.

  • Segal, M., Y. Ookouchi, and R. A. Pielke, 1987: On the effect of steep slope orientation on the intensity of daytime upslope flow. J. Atmos. Sci., 44 , 35873592.

    • Search Google Scholar
    • Export Citation
  • Urfer-Henneberger, C., 1970: Neuere Beobachtungen über die Entwicklung des Schönwetterwindsystems in einem V-förmigen Alpental (Dischmatal bei Davos). Arch. Meteor. Geophys. Bioklimatol., B18 , 2142.

    • Search Google Scholar
    • Export Citation
  • Vergeiner, I., and E. Dreiseitl, 1987: Valley winds and slope winds—Observations and elementary thoughts. Meteor. Atmos. Phys., 36 , 264286.

    • Search Google Scholar
    • Export Citation
  • Vergeiner, I., E. Dreiseitl, and C. D. Whiteman, 1987: Dynamics of katabatic winds in Colorado’s Brush Creek valley. J. Atmos. Sci., 44 , 148157.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., 1989: Morning transition tracer experiments in a deep narrow valley. J. Appl. Meteor., 28 , 626635.

  • Whiteman, C. D., K. J. Allwine, L. J. Fritschen, M. M. Orgill, and J. R. Simpson, 1989: Deep valley radiation and surface energy budget microclimates. Part II: Energy budget. J. Appl. Meteor., 28 , 427437.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., and Coauthors, 2008: METCRAX 2006—Meteorological experiments in Arizona’s Meteor Crater. Bull. Amer. Meteor. Soc., 89 , 16651680.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., S. W. Hoch, M. Lehner, and T. Haiden, 2010: Nocturnal cold air intrusions into a closed basin: Observational evidence and conceptual model. J. Appl. Meteor. Climatol., 49 , 18941905.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 302 174 85
PDF Downloads 140 67 3