Estimating Drought Conditions for Regions with Limited Precipitation Data

Jinyoung Rhee Department of Geography, University of South Carolina, Columbia, South Carolina

Search for other papers by Jinyoung Rhee in
Current site
Google Scholar
PubMed
Close
and
Gregory J. Carbone Department of Geography, University of South Carolina, Columbia, South Carolina

Search for other papers by Gregory J. Carbone in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Three closely related issues that affect drought estimation in regions with limited precipitation data are addressed by investigating methods for filling missing daily precipitation data, handling short-term records, and deriving drought information for unsampled locations. The analysis yields three general conclusions: 1) it is better to conduct spatial interpolation prior to calculating drought index values, 2) using weather stations with moderate lengths of records (usually at least 10 years) improves the spatial–temporal characterization of drought, and 3) alternative precipitation sources of the National Weather Service multisensor precipitation rainfall estimates and the Tropical Rainfall Measuring Mission (TRMM) satellite monthly rainfall product (3B43) do not outperform spatially interpolated daily precipitation data in most regions, except in the western United States where the TRMM-based precipitation data work better than the spatially interpolated values for drought monitoring.

Corresponding author address: Jinyoung Rhee, Department of Geography, University of South Carolina, 709 Bull Street, Columbia, SC 29208. Email: jyrhee@gmail.com

Abstract

Three closely related issues that affect drought estimation in regions with limited precipitation data are addressed by investigating methods for filling missing daily precipitation data, handling short-term records, and deriving drought information for unsampled locations. The analysis yields three general conclusions: 1) it is better to conduct spatial interpolation prior to calculating drought index values, 2) using weather stations with moderate lengths of records (usually at least 10 years) improves the spatial–temporal characterization of drought, and 3) alternative precipitation sources of the National Weather Service multisensor precipitation rainfall estimates and the Tropical Rainfall Measuring Mission (TRMM) satellite monthly rainfall product (3B43) do not outperform spatially interpolated daily precipitation data in most regions, except in the western United States where the TRMM-based precipitation data work better than the spatially interpolated values for drought monitoring.

Corresponding author address: Jinyoung Rhee, Department of Geography, University of South Carolina, 709 Bull Street, Columbia, SC 29208. Email: jyrhee@gmail.com

Save
  • Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4 , 1147–1167.

    • Search Google Scholar
    • Export Citation
  • Carbone, G. J., J. Rhee, H. P. Mizzell, and R. Boyles, 2008: Decision support: A regional-scale drought monitoring tool for the Carolinas. Bull. Amer. Meteor. Soc., 89 , 20–28.

    • Search Google Scholar
    • Export Citation
  • Coulibaly, P., and N. D. Evora, 2007: Comparison of neural network methods for infilling missing daily weather records. J. Hydrol., 341 , 27–41.

    • Search Google Scholar
    • Export Citation
  • Daly, C., W. P. Gibson, G. H. Taylor, M. K. Doggett, and J. I. Smith, 2007: Observer bias in daily precipitation measurements at United States Cooperative Network stations. Bull. Amer. Meteor. Soc., 88 , 899–912.

    • Search Google Scholar
    • Export Citation
  • DeGaetano, A. T., and B. N. Belcher, 2007: Spatial interpolation of daily maximum and minimum air temperature based on meteorological model analyses and independent observations. J. Appl. Meteor. Climatol., 46 , 1981–1992.

    • Search Google Scholar
    • Export Citation
  • Dirks, K. N., J. E. Hay, C. D. Stow, and D. Harris, 1998: High-resolution studies of rainfall on Norfolk Island. Part II: Interpolation of rainfall data. J. Hydrol., 208 , 187–193.

    • Search Google Scholar
    • Export Citation
  • Eischeid, J. K., P. A. Pasteris, H. F. Diaz, M. S. Plantico, and N. J. Lott, 2000: Creating a serially complete, national daily time series of temperature and precipitation for the western United States. J. Appl. Meteor., 39 , 1580–1591.

    • Search Google Scholar
    • Export Citation
  • Guttman, N. B., 1998: Comparing the Palmer drought index and the standardized precipitation index. J. Amer. Water Resour. Assoc., 34 , 113–121.

    • Search Google Scholar
    • Export Citation
  • Guttman, N. B., 1999: Accepting the Standardized Precipitation Index: A calculation algorithm. J. Amer. Water Resour. Assoc., 35 , 311–322.

    • Search Google Scholar
    • Export Citation
  • Han, W. S., S. J. Burian, and J. M. Shepherd, 2010: Assessment of satellite-based rainfall estimates in urban areas in different geographic and climate regions. Nat. Hazards, 56 , 733–747.

    • Search Google Scholar
    • Export Citation
  • Hand, L. M., and J. M. Shepherd, 2009: An investigation of warm-season spatial rainfall variability in Oklahoma City: Possible linkages to urbanization and prevailing wind. J. Appl. Meteor. Climatol., 48 , 251–269.

    • Search Google Scholar
    • Export Citation
  • Hartkamp, A. D., K. De Beurs, A. Stein, and J. W. White, 1999: Interpolation techniques for climate variables. International Maize and Wheat Improvement Center (CIMMYT), NRG-GIS Series 99-01, 34 pp.

    • Search Google Scholar
    • Export Citation
  • Heim Jr., R. R., 2002: A review of twentieth-century drought indices used in the United States. Bull. Amer. Meteor. Soc., 83 , 1149–1165.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8 , 38–55.

    • Search Google Scholar
    • Export Citation
  • Im, J., 2006: A remote sensing change detection system based on neighborhood/object correlation image analysis, expert systems, and an automated calibration model. Ph.D. dissertation, University of South Carolina, 178 pp.

  • Jeffrey, S. J., J. O. Carter, K. B. Moodie, and A. R. Beswick, 2001: Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environ. Modell. Software, 16 , 309–330.

    • Search Google Scholar
    • Export Citation
  • Jolly, W. M., and S. W. Running, 2004: Effects of precipitation and soil water potential on drought deciduous phenology in the Kalahari. Global Change Biol., 10 , 303–308.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5 , 487–503.

    • Search Google Scholar
    • Export Citation
  • Kidd, C., D. R. Kniveton, M. C. Todd, and T. J. Bellerby, 2003: Satellite rainfall estimation using combined passive microwave and infrared algorithms. J. Hydrometeor., 4 , 1088–1104.

    • Search Google Scholar
    • Export Citation
  • Lam, N. S.-N., 1983: Spatial interpolation methods: A review. Amer. Geogr., 10 , 129–149.

  • Li, J., and A. D. Heap, 2008: A Review of Spatial Interpolation Methods for Environmental Scientists. Geoscience Australia, Record 2008/23, 137 pp.

    • Search Google Scholar
    • Export Citation
  • McKee, T. B., N. J. Doesken, and J. Kleist, 1993: The relationship of drought frequency and duration to time scales. Preprints, Eighth Conf. on Applied Climatology, Anaheim, CA, Amer. Meteor. Soc., 179–184.

    • Search Google Scholar
    • Export Citation
  • Mitas, L., and H. Mitasova, 1999: Spatial interpolation. Geographical Information Systems: Principles, Techniques, Multivariate Interpolation of Precipitation Management and Applications, P. A. Longley et al., Eds., John Wiley and Sons, 481–492.

    • Search Google Scholar
    • Export Citation
  • NASDA, 2001: TRMM Data Users Handbook. National Space Development Agency of Japan, Earth Observation Center, 226 pp.

  • Palmer, W. C., 1965: Meteorological drought. U.S. Weather Bureau Research Paper 45, 58 pp.

  • Paulhus, J. L. H., and M. A. Kohler, 1952: Interpolation of missing precipitation records. Mon. Wea. Rev., 80 , 129–133.

  • Quiring, S. M., 2009: Developing objective operational definitions for monitoring drought. J. Appl. Meteor. Climatol., 48 , 1217–1229.

    • Search Google Scholar
    • Export Citation
  • Rhee, J., G. J. Carbone, and J. Hussey, 2008: Drought index mapping at different spatial units. J. Hydrometeor., 9 , 1523–1534.

  • Rhee, J., J. Im, and G. J. Carbone, 2010: Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data. Remote Sens. Environ., 114 , 2875–2887.

    • Search Google Scholar
    • Export Citation
  • Rudolf, B., and U. Schneider, 2005: Calculation of gridded precipitation data for the global land-surface using in-situ gauge observations. Proc. Second Workshop of the Int. Precipitation Working Group, Monterey, CA, EUMETSAT, 231–247.

    • Search Google Scholar
    • Export Citation
  • Seo, D.-J., 1998: Real-time estimation of rainfall fields using radar rainfall and rain gauge data. J. Hydrol., 208 , 37–52.

  • Sorooshian, S., K.-L. Hsu, X. Gao, H. V. Gupta, B. Imam, and D. Braithwaite, 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81 , 2035–2046.

    • Search Google Scholar
    • Export Citation
  • Tabios, G. Q., and J. D. Salas, 1985: A comparative analysis of techniques for spatial interpolation of precipitation. Water Resour. Bull., 21 , 365–380.

    • Search Google Scholar
    • Export Citation
  • Vincenty, T., 1975: Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations. Surv. Rev. XXIII, 176 , 88–93.

    • Search Google Scholar
    • Export Citation
  • Vose, R. S., R. L. Schmoyer, P. M. Steurer, T. C. Peterson, R. Heim, T. R. Karl, and J. K. Eischeid, 1992: The Global Historical Climatology Network: Long-term monthly temperature, precipitation, sea level pressure, and station pressure data. ORNL/CDIAC-53, NDP-041, 324 pp. [Available from Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831].

    • Search Google Scholar
    • Export Citation
  • Wilhite, D. A., and M. Buchanan-Smith, 2005: Drought as hazard: Understanding the natural and social context. Drought and Water Crises: Science, Technology, and Management Issues, D. A. Wilhite, Ed., CRC, 3–29.

    • Search Google Scholar
    • Export Citation
  • Williams Jr., C. N., M. J. Menne, R. S. Vose, and D. R. Easterling, 2004: United States Historical Climatology Network daily temperature, precipitation, and snow data. ORNL/CDIAC-118, NDP-070. [Available online at http://cdiac.ornl.gov/epubs/ndp/ushcn/usa.html].

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., 1981: On the validation of models. Phys. Geogr., 2 , 184–194.

  • Willmott, C. J., 1982: Some comments on the evaluation of model performance. Bull. Amer. Meteor. Soc., 63 , 1309–1313.

  • Willmott, C. J., and K. Matsuura, 2005: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Res., 30 , 79–82.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., S. M. Robeson, and M. J. Janis, 1996: Comparison of approaches for estimating time-averaged precipitation using data from the USA. Int. J. Climatol., 16 , 1103–1115.

    • Search Google Scholar
    • Export Citation
  • WMO, 1989: Calculation of monthly and annual 30-year standard normals. WCDP 10, WMO-TD 341, 11 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 360 74 6
PDF Downloads 152 22 0