Prospects of the WSR-88D Radar for Cloud Studies

Valery M. Melnikov Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Search for other papers by Valery M. Melnikov in
Current site
Google Scholar
PubMed
Close
,
Dusan S. Zrnić NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Dusan S. Zrnić in
Current site
Google Scholar
PubMed
Close
,
Richard J. Doviak NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Richard J. Doviak in
Current site
Google Scholar
PubMed
Close
,
Phillip B. Chilson School of Meteorology and Atmospheric Radar Research Center, University of Oklahoma, Norman, Oklahoma

Search for other papers by Phillip B. Chilson in
Current site
Google Scholar
PubMed
Close
,
David B. Mechem Atmospheric Science Program, Department of Geography, University of Kansas, Lawrence, Kansas

Search for other papers by David B. Mechem in
Current site
Google Scholar
PubMed
Close
, and
Yefim L. Kogan Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Search for other papers by Yefim L. Kogan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Sounding of nonprecipitating clouds with the 10-cm wavelength Weather Surveillance Radar-1988 Doppler (WSR-88D) is discussed. Readily available enhancements to signal processing and volume coverage patterns of the WSR-88D allow observations of a variety of clouds with reflectivities as low as −25 dBZ (at a range of 10 km). The high sensitivity of the WSR-88D, its wide velocity and unambiguous range intervals, and the absence of attenuation allow accurate measurements of the reflectivity factor, Doppler velocity, and spectrum width fields in clouds to ranges of about 50 km. Fields of polarimetric variables in clouds, observed with a research polarimetric WSR-88D, demonstrate an abundance of information and help to resolve Bragg and particulate scatter. The scanning, Doppler, and polarimetric capabilities of the WSR-88D allow real-time, three-dimensional mapping of cloud processes, such as transformations of hydrometeors between liquid and ice phases. The presence of ice particles is revealed by high differential reflectivities and the lack of correlation between reflectivity and differential reflectivity in clouds in contrast to that found for rain. Pockets of high differential reflectivities are frequently observed in clouds; maximal values of differential reflectivity exceed 8 dB, far above the level observed in rain. The establishment of the WSR-88D network consisting of 157 polarimetric radars can be used to collect cloud data at any radar site, making the network a potentially powerful tool for climatic studies.

Corresponding author address: Dr. Valery Melnikov, CIMMS, University of Oklahoma, 120 David Boren Blvd., Rm. 4919, Norman, OK 73072. E-mail: valery.melnikov@noaa.gov

Abstract

Sounding of nonprecipitating clouds with the 10-cm wavelength Weather Surveillance Radar-1988 Doppler (WSR-88D) is discussed. Readily available enhancements to signal processing and volume coverage patterns of the WSR-88D allow observations of a variety of clouds with reflectivities as low as −25 dBZ (at a range of 10 km). The high sensitivity of the WSR-88D, its wide velocity and unambiguous range intervals, and the absence of attenuation allow accurate measurements of the reflectivity factor, Doppler velocity, and spectrum width fields in clouds to ranges of about 50 km. Fields of polarimetric variables in clouds, observed with a research polarimetric WSR-88D, demonstrate an abundance of information and help to resolve Bragg and particulate scatter. The scanning, Doppler, and polarimetric capabilities of the WSR-88D allow real-time, three-dimensional mapping of cloud processes, such as transformations of hydrometeors between liquid and ice phases. The presence of ice particles is revealed by high differential reflectivities and the lack of correlation between reflectivity and differential reflectivity in clouds in contrast to that found for rain. Pockets of high differential reflectivities are frequently observed in clouds; maximal values of differential reflectivity exceed 8 dB, far above the level observed in rain. The establishment of the WSR-88D network consisting of 157 polarimetric radars can be used to collect cloud data at any radar site, making the network a potentially powerful tool for climatic studies.

Corresponding author address: Dr. Valery Melnikov, CIMMS, University of Oklahoma, 120 David Boren Blvd., Rm. 4919, Norman, OK 73072. E-mail: valery.melnikov@noaa.gov
Save
  • Battan, L. J., 1973: Radar Observation of the Atmosphere. University of Chicago, 324 pp.

  • Bird, R. E., and R. L. Hulstrom, 1981: A simplified clear sky model for direct and diffuse insolation on horizontal surfaces. Solar Energy Research Institute Tech Rep. SERI/TR-642-761, 39 pp.

    • Search Google Scholar
    • Export Citation
  • Clothiaux, E. E., M. A. Miller, B. A. Albrecht, T. P. Ackerman, J. Verlinde, D. M. Babb, R. M. Peters, and W. J. Syrett, 1995: An evaluation of a 94-GHz radar for remote sensing of cloud properties. J. Atmos. Oceanic Technol., 12, 201229.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., 1999: Scattering from refractive index perturbations in turbulent flow. [Published lecture available from the National MST Radar Facility, Gandanki-517 122, Tirupati, India.]

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnić, 2006: Doppler Radar and Weather Observations. 2nd ed. Dover, 562 pp.

  • Erkelens, J. S., V. K. C. Venema, H. W. J. Russchenberg, and L. P. Ligthart, 2001: Coherent scattering of microwaves by particles: Evidence from clouds and smoke. J. Atmos. Sci., 58, 10911102.

    • Search Google Scholar
    • Export Citation
  • Gage, K. S., C. R. Williams, W. L. Ecklund, and P. E. Johnston, 1999: Use of two profilers during MCTEX for unambiguous identification of Bragg scattering and Rayleigh scattering. J. Atmos. Sci., 56, 36793691.

    • Search Google Scholar
    • Export Citation
  • Gossard, E. E., 1979: A fresh look at the radar reflectivity of clouds. Radio Sci., 14, 10891097.

  • Gossard, E. E., and R. G. Strauch, 1981: The refractive index spectra within clouds from forward-scatter radar observations. J. Appl. Meteor., 20, 170183.

    • Search Google Scholar
    • Export Citation
  • Gossard, E. E., and R. G. Strauch, 1983: Radar Observations of Clear Air and Clouds. Elsevier, 280 pp.

  • Hamazu, K., H. Hashiguchi, T. Wakayama, T. Matsuda, R. J. Doviak, and S. Fukao, 2003: A 35-GHz scanning Doppler radar for fog observations. J. Atmos. Oceanic Technol., 20, 972986.

    • Search Google Scholar
    • Export Citation
  • Hocking, W. K., 2003: Fast and accurate calculation of spectral beam-broadening for turbulence studies. Proc. 10th Int. Workshop on Technical and Scientific Aspects of MST Radar, Piura, Peru, International Union of Radio Science, 214–217.

    • Search Google Scholar
    • Export Citation
  • Jonas, P. R., 1996: Turbulence and cloud microphysics. Atmos. Res., 40, 283306.

  • Knight, C. A., and L. J. Miller, 1993: First radar echoes from cumulus clouds. Bull. Amer. Meteor. Soc., 74, 179188.

  • Knight, C. A., and L. J. Miller, 1998: Early radar echoes from small, warm cumulus: Bragg and hydrometeor scattering. J. Atmos. Sci., 55, 29742992.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., B. A. Albrecht, R. Lhermitte, and A. Savtchenko, 2001: Radar observations of updrafts, downdrafts, and turbulence in fair-weather cumuli. J. Atmos. Sci., 58, 17501766.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., E. E. Clothiaux, M. A. Miller, B. A. Albrecht, G. L. Stephens, and T. P. Ackerman, 2007: Millimeter-wavelength radars: New frontier in atmospheric cloud and precipitation research. Bull. Amer. Meteor. Soc., 88, 16081624.

    • Search Google Scholar
    • Export Citation
  • Kropfli, R. A., and R. D. Kelly, 1996: Meteorological research applications of mm-wave radar. Meteor. Atmos. Phys., 59, 105121.

  • Manheimer, W. M., and Coauthors, 2003: Initial cloud images with the NRL high power 94 GHz WARLOC radar. Geophys. Res. Lett., 30, 1103, doi:10.1029/2002GL016507.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., T. Uttal, J. B. Snider, and R. A. Kropfli, 1992: Estimates of ice cloud parameters from ground-based infrared radiometer and radar measurements. J. Geophys. Res., 97, 11 56711 574.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., A. Korolev, and A. J. Heymsfield, 2002: Profiling ice mass and characteristic particle size from Doppler radar measurements. J. Atmos. Oceanic Technol., 19, 10031018.

    • Search Google Scholar
    • Export Citation
  • Melnikov, V., and D. S. Zrnić, 2004: Estimates of large spectrum widths from autocovariances. J. Atmos. Oceanic Technol., 21, 969974.

    • Search Google Scholar
    • Export Citation
  • Melnikov, V., and D. S. Zrnić, 2007: Autocorrelation and cross-correlation estimators of polarimetric variables. J. Atmos. Oceanic Technol., 24, 13371350.

    • Search Google Scholar
    • Export Citation
  • Melnikov, V., and R. J. Doviak, 2009: Turbulence and wind shear in layers of large Doppler spectrum width in stratiform precipitation. J. Atmos. Oceanic Technol., 26, 430443.

    • Search Google Scholar
    • Export Citation
  • Meneghini, R., and T. Kozu, 1990: Spaceborne Weather Radar. Artech House, 199 pp.

  • Miller, M. A., J. Verlinde, G. V. Gilbert, G. J. Lehenbauer, J. S. Tongue, and E. E. Clothiaux, 1998: Detection of nonprecipitating clouds with the WSR-88D: A theoretical and experimental survey of capabilities and limitations. Wea. Forecasting, 13, 10461062.

    • Search Google Scholar
    • Export Citation
  • Moran, K. P., B. E. Martner, M. J. Post, R. A. Kropfli, D. C. Welsh, and K. B. Widener, 1998: An unattended cloud profiling radar for use in climate research. Bull. Amer. Meteor. Soc., 79, 443455.

    • Search Google Scholar
    • Export Citation
  • Ottersten, H., 1969: Atmospheric structure and radar backscattering in clear air. Radio Sci., 4, 11791193.

  • Reinking, R. F., S. Y. Matrosov, R. A. Kropfli, and B. W. Bartram, 2002: Evaluation of a 45° slant quasi-linear radar polarization state for distinguishing drizzle droplets, pristine ice crystals, and less regular ice particles. J. Atmos. Oceanic Technol., 19, 296321.

    • Search Google Scholar
    • Export Citation
  • Shaw, R. A., 2003: Particle–turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech., 35, 183227.

  • Shupe, M. D., and Coauthors, 2008: A focus on mixed-phase clouds. Bull. Amer. Meteor. Soc., 89, 15491562.

  • Siegert, A. F. G., and H. Goldstein, 1951: Coherent and incoherent scattering from assemblies of scatterers. Propagation of Short Radio Waves, D. E. Kerr, Ed., McGraw-Hill, 699–706.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and C. D. Kummerow, 2007: The remote sensing of clouds and precipitation from space: A review. J. Atmos. Sci., 64, 37423765.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train. Bull. Amer. Meteor. Soc., 83, 17711790.

  • Widener, K. B., and J. B. Mead, 2004: W-band ARM cloud radar—Specifications and design. Proc. 14th ARM Science Team Meeting, Albuquerque, NM, Department of Energy/Office of Science. [Available online at http://www.arm.gov/publications/proceedings/conf14/.]

    • Search Google Scholar
    • Export Citation
  • Zhang, G., J. Hou, S. Ito, and T. Oguchi, 1990: Optical wave propagation in random medium composed of both turbulence and particles. J. Commun. Res. Lab., 37, 151/152, 4362.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., and A. V. Ryzhkov, 1999: Polarimetry for weather surveillance radars. Bull. Amer. Meteor. Soc., 80, 389406.

  • Zrnić, D. S., V. M. Melnikov, and J. K. Carter, 2006: Calibrating differential reflectivity on the WSR-88D. J. Atmos. Oceanic Technol., 23, 944951.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 208 131 7
PDF Downloads 116 52 4