Polarimetric Radar Observation Operator for a Cloud Model with Spectral Microphysics

A. Ryzhkov Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by A. Ryzhkov in
Current site
Google Scholar
PubMed
Close
,
M. Pinsky Department of Atmospheric Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel

Search for other papers by M. Pinsky in
Current site
Google Scholar
PubMed
Close
,
A. Pokrovsky Department of Atmospheric Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel

Search for other papers by A. Pokrovsky in
Current site
Google Scholar
PubMed
Close
, and
A. Khain Department of Atmospheric Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel

Search for other papers by A. Khain in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The radar observation operator for computation of polarimetric radar variables from the output of numerical cloud models is described in its most generic form. This operator is combined with the Hebrew University of Jerusalem cloud model with spectral microphysics. The model contains 7 classes of hydrometeors and each class is represented by size distribution functions in 43 size bins. The performance of the cloud model and radar observation operator has been evaluated for the case of a hailstorm in Oklahoma on 2 February 2009. It is shown that the retrieved fields of polarimetric radar variables at C and S microwave bands are generally consistent with results of observations. The relationship between microphysical and polarimetric signatures is illustrated.

Corresponding author address: Prof. Alexander Khain, Department of Atmospheric Sciences, The Hebrew University of Jerusalem, Givat Ram, 91904 Jerusalem, Israel. E-mail: khain@vms.huji.ac.il

Abstract

The radar observation operator for computation of polarimetric radar variables from the output of numerical cloud models is described in its most generic form. This operator is combined with the Hebrew University of Jerusalem cloud model with spectral microphysics. The model contains 7 classes of hydrometeors and each class is represented by size distribution functions in 43 size bins. The performance of the cloud model and radar observation operator has been evaluated for the case of a hailstorm in Oklahoma on 2 February 2009. It is shown that the retrieved fields of polarimetric radar variables at C and S microwave bands are generally consistent with results of observations. The relationship between microphysical and polarimetric signatures is illustrated.

Corresponding author address: Prof. Alexander Khain, Department of Atmospheric Sciences, The Hebrew University of Jerusalem, Givat Ram, 91904 Jerusalem, Israel. E-mail: khain@vms.huji.ac.il
Save
  • Aydin, K., and Y. Zhao, 1990: A computational study of polarimetric radar observables in hail. IEEE Trans. Geosci. Remote Sens., 28, 412–422.

    • Search Google Scholar
    • Export Citation
  • Bigg, E. K., 1953: The formation of atmospheric ice crystals by the freezing of droplets. Quart. J. Roy. Meteor. Soc., 79, 510–519.

    • Search Google Scholar
    • Export Citation
  • Blahak, U., 2008: Towards a better representation of high density ice particles in a state-of-the-art two-moment bulk microphysical scheme. Extended Abstracts, 15th Int. Conf. on Clouds and Precipitation, Cancun, Mexico, ICCP. [Available online at http://cabernet.atmosfcu.unam.mx/ICCP-2008/abstracts/Program_on_line/Poster_07/Blahak_extended_1.pdf.]

    • Search Google Scholar
    • Export Citation
  • Bohren, C. F., and D. R. Huffman, 1983: Absorption and Scattering of Light by Small Particles. John Wiley and Sons, 660 pp.

  • Bott, A., 1998: A flux method for the numerical solution of the stochastic collection equation. J. Atmos. Sci., 55, 2284–2293.

  • Brandes, E. A., G. Zhang, and J. Vivekanandan, 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteor., 41, 674–685.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., A. Hou, E. Smith, V. Bringi, S. Rutledge, E. Gorgucci, W. Petersen, and G. Skofronick-Jackson, 2008: Potential role of dual-polarization radar in the validation of satellite precipitation measurements: Rationale and opportunities. Bull. Amer. Meteor. Soc., 89, 1127–1145.

    • Search Google Scholar
    • Export Citation
  • Cheng, L., M. English, and R. Wong, 1985: Hailstone size distributions and their relationship to storm thermodynamics. J. Climate Appl. Meteor., 24, 1059–1067.

    • Search Google Scholar
    • Export Citation
  • Depue, T., P. Kennedy, and S. Rutledge, 2007: Performance of the hail differential reflectivity (HDR) polarimetric hail indicator. J. Appl. Meteor. Climatol., 46, 1290–1301.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., V. Bringi, A. V. Ryzhkov, A. Zahrai, and D. S. Zrnic, 2000: Considerations for polarimetric upgrades to operational WSR-88D radars. J. Atmos. Oceanic Technol., 17, 257–278.

    • Search Google Scholar
    • Export Citation
  • Fabry, F., and W. Szyrmer, 1999: Modeling of the melting layer. Part II: Electromagnetics. J. Atmos. Sci., 56, 3596–3600.

  • Giangrande, S. E., 2007: Investigation of polarimetric measurements of rainfall at close and distant ranges. Ph.D. dissertation, University of Oklahoma, 236 pp.

  • Huang, G.-J., V. Bringi, S. van den Heever, and W. Cotton, 2005: Polarimetric radar signatures from RAMS microphysics. Preprints, 32nd Int. Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., P11R.6. [Available online at http://ams.confex.com/ams/pdfpapers/96261.pdf.]

    • Search Google Scholar
    • Export Citation
  • Istok, M., and Coauthors, 2009: WSR-88D dual-polarization initial operational capabilities. Preprints, 25th Conf. on Int. Interactive Information and Processing Systems (IIPS) in Meteorology, Oceanography, and Hydrology, Phoenix, AZ, Amer. Meteor. Soc., 15.5. [Available online at http://ams.confex.com/ams/89annual/techprogram/paper_148927.htm.]

    • Search Google Scholar
    • Export Citation
  • Jung, Y., G. Zhang, and M. Xue, 2008: Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman filter. Part I: Observation operators for reflectivity and polarimetric variables. Mon. Wea. Rev., 136, 2228–2245.

    • Search Google Scholar
    • Export Citation
  • Jung, Y., M. Xue, and G. Zhang, 2010: Simulations of polarimetric radar signatures of a supercell storm using a two-moment bulk microphysical scheme. J. Appl. Meteor. Climatol., 49, 146–163.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., M. Ovtchinnikov, M. Pinsky, A. Pokrovsky, and H. Krugliak, 2000: Notes on the state-of-the-art numerical modeling of cloud microphysics. Atmos. Res., 55, 159–224.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., M. B. Pinsky, M. Shapiro, and A. Pokrovsky, 2001: Graupel-drop collision efficiencies. J. Atmos. Sci., 58, 2571–2595.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., A. Pokrovsky, M. Pinsky, A. Seifert, and V. Phillips, 2004: Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications. J. Atmos. Sci., 61, 2963–2982.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., N. Benmoshe, and A. Pokrovsky, 2008: Factors determining the impact of aerosols on surface precipitation from clouds: Attempt of classification. J. Atmos. Sci., 65, 1721–1748.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., D. Rosenfeld, A. Pokrovsky, U. Blahak, and A. Ryzhkov, 2011: The role of CCN in precipitation and hail in a mid-latitude storm as seen in simulations using a spectral (bin) microphysics model in a 2D frame. Atmos. Res., 99, 129–146.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M., and A. Ryzhkov, 2008a: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 1940–1961.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M., and A. Ryzhkov, 2008b: Interpretation of polarimetric signatures in supercell storms using explicit microphysical modeling. Extended Abstracts, Fifth European Conf. on Radar in Meteorology and Hydrology, Helsinki, Finland, Finnish Meteorological Institute, P7.2. [Available online at http://erad2008.fmi.fi/proceedings/extended/erad2008-0065-extended.pdf.]

    • Search Google Scholar
    • Export Citation
  • Kumjian, M., and A. Ryzhkov, 2009: Storm-relative helicity revealed from polarimetric radar measurements. J. Atmos. Sci., 66, 667–685.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M., and A. Ryzhkov, 2010: The impact of evaporation on polarimetric characteristics of rain: Theoretical model and practical implications. J. Appl. Meteor. Climatol., 49, 1247–1267.

    • Search Google Scholar
    • Export Citation
  • Liao, L., and R. Meneghini, 2005: On modeling air/spaceborne radar returns in the melting layer. IEEE Trans. Geosci. Remote Sens., 43, 2799–2809.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2008: Assessment of radar signal attenuation caused by the melting hydrometeor layer. IEEE Trans. Geosci. Remote Sens., 46, 1039–1047.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., R. F. Reinking, R. A. Kropfli, and B. W. Bartram, 1996: Estimation of ice hydrometeor types and shapes from radar polarization measurements. J. Atmos. Oceanic Technol., 13, 85–96.

    • Search Google Scholar
    • Export Citation
  • Maxwell Garnett, J. C., 1904: Color in metal glasses and in metallic films. Philos. Trans. Roy. Soc. London, A203, 385–420.

  • Meneghini, R., and L. Liao, 1996: Comparisons of cross sections of melting hydrometeors as derived from dielectric mixing formulas and a numerical method. J. Appl. Meteor., 35, 1658–1670.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., P. J. DeMott, and W. R. Cotton, 1992: New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Meteor., 31, 708–721.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., 2000: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt., 39, 1026–1031.

    • Search Google Scholar
    • Export Citation
  • Noppel, H., A. Pokrovsky, B. Lynn, A. P. Khain, and K. D. Beheng, 2010: A spatial shift of precipitation from the sea to the land caused by introducing submicron soluble aerosols: Numerical modeling. J. Geophys. Res., 115, D18212, doi:10.1029/2009JD012645.

    • Search Google Scholar
    • Export Citation
  • Pfeifer, M., G. C. Craig, M. Hagen, and C. Keil, 2008: A polarimetric radar forward operator for model evaluation. J. Appl. Meteor. Climatol., 47, 3202–3220.

    • Search Google Scholar
    • Export Citation
  • Phillips, V., A. Khain, and A. Pokrovsky, 2007: The influence of melting on the dynamics and precipitation production in maritime and continental storm clouds. J. Atmos. Sci., 64, 338–359.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M., A. P. Khain, and M. Shapiro, 2001: Collision efficiency of drops in a wide range of Reynolds numbers: Effects of pressure on spectrum evolution. J. Atmos. Sci., 58, 742–764.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Kluwer Academic, 976 pp.

  • Rasmussen, R. M., and A. Heymsfield, 1987: Melting and shedding of graupel and hail. Part I: Model physics. J. Atmos. Sci., 44, 2754–2763.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., V. Levizzani, and H. R. Pruppacher, 1984: A wind tunnel study on the melting behavior of atmospheric ice particles. III: Experiment and theory for spherical ice particles of radius >500 μm. J. Atmos. Sci., 41, 381–388.

    • Search Google Scholar
    • Export Citation
  • Ray, P., 1972: Broadband complex refractive indices of ice and water. Appl. Opt., 11, 1836–1844.

  • Romine, G., D. Burgess, and R. Wilhelmson, 2008: A dual-polarization-radar-based assessment of the 8 May 2003 Oklahoma City are tornadic supercell. Mon. Wea. Rev., 136, 2849–2870.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., 2001: Interpretation of polarimetric radar covariance matrix for meteorological scatterers: Theoretical analysis. J. Atmos. Oceanic Technol., 18, 315–328.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, S. Giangrande, and D. S. Zrnic, 2005: The Joint Polarization Experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86, 809–824.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., and Coauthors, 2007: Comparison of polarimetric algorithms for hydrometeor classification at S and C bands. Analysis of the performance in different climate regions. Proc. 33rd Conf. on Radar Meteorology, Cairns, Queensland, Australia, Amer. Meteor. Soc., 10.3. [Available online at http://ams.confex.com/ams/33Radar/techprogram/paper_123109.htm.]

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., S. Giangrande, A. Khain, M. Pinsky, and A. Pokrovsky, 2008: Exploring model-based polarimetric retrieval of vertical profiles of precipitation. Extended Abstracts, Fifth European Conf. on Radar in Meteorology and Hydrology, Helsinki, Finland, Finnish Meteorological Institute, P6.1. [Available online at http://erad2008.fmi.fi/proceedings/extended/erad2008-0094-extended.pdf.]

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., S. Ganson, A. Khain, M. Pinsky, and A. Pokrovsky, 2009: Polarimetric characteristics of melting hail at S and C bands. Preprints, 34th Conf. on Radar Meteorology, Williamsburg, VA, Amer. Meteor. Soc., 4A.6. [Available online at http://ams.confex.com/ams/pdfpapers/155571.pdf.]

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., D. S. Zrnic, and A. V. Ryzhkov, 2000: Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteor., 39, 1341–1372.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., T. Endoh, and G. Wakahama, 1991: Vapor diffusional growth of free-falling snow crystals between −3° and −23°C. J. Meteor. Soc. Japan, 69, 15–30.

    • Search Google Scholar
    • Export Citation
  • Vali, G., 1994: Freezing rate due to heterogeneous nucleation. J. Atmos. Sci., 51, 1843–1856.

  • Van de Hulst, H. C., 1981: Light Scattering by Small Particles. Dover, 470 pp.

  • Van den Broeke, M., J. Straka, and E. Rasmussen, 2008: Polarimetric radar observations at low levels during tornado life cycles in a small sample of classic Southern Plains supercells. J. Appl. Meteor. Climatol., 47, 1232–1247.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., R. Raghavan, and V. Bringi, 1993: Polarimetric radar modeling of mixtures of precipitation particles. IEEE Trans. Geosci. Remote Sens., 31, 1017–1030.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2523 917 98
PDF Downloads 1689 324 26