• Atlas, R., R. N. Hoffman, S. C. Bloom, J. C. Jusem, and J. Ardizzone, 1996: A multiyear global surface wind velocity dataset using SSM/I wind observations. Bull. Amer. Meteor. Soc., 77, 869882.

    • Search Google Scholar
    • Export Citation
  • Barker, H. W., R. Kenji-Goldstein, and D. E. Stevens, 2003: Monte Carlo simulation of solar reflectances for cloudy atmospheres. J. Atmos. Sci., 60, 18811894.

    • Search Google Scholar
    • Export Citation
  • Barkstrom, B. R., 1984: The Earth Radiation Budget Experiment (ERBE). Bull. Amer. Meteor. Soc., 65, 11701185.

  • Bentamy, A., H.-L. Ayina, P. Queffeulou, D. Croize-Fillon, and V. Kerbaol, 2007: Improved near real time surface wind resolution over the Mediterranean Sea. Ocean Sci., 3, 259271.

    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., J. F. Gimeno-Ferrer, and E. López-Baeza, 2003: Flux retrieval optimization with a nonscanner along-track broadband radiometer. J. Geophys. Res., 108, 4061, doi:10.1029/2002JD002162.

    • Search Google Scholar
    • Export Citation
  • Clerbaux, N., S. Dewitte, L. Gonzalez, C. Bertrand, B. Nicula, and A. Ipe, 2003: Outgoing longwave flux estimation: Improvement of angular modelling using spectral information. Remote Sens. Environ., 85, 389395.

    • Search Google Scholar
    • Export Citation
  • Dewitte, S., L. Gonzalez, N. Clerbaux, A. Ipe, C. Bertrand, and B. De Paepe, 2008: The Geostationary Earth Radiation Budget Edition 1 data processing algorithms. Adv. Space Res., 41, 19061913.

    • Search Google Scholar
    • Export Citation
  • Di Carmine, C., M. Campanelli, T. Nakajima, C. Tomasi, and V. Vitale, 2005: Retrievals of Antarctic aerosol characteristics using a sun–sky radiometer during the 2001–2002 austral summer campaign. J. Geophys. Res., 110, D13202, doi:10.1029/2004JD005280.

    • Search Google Scholar
    • Export Citation
  • Dong, X., G. G. Mace, P. Minnis, and D. F. Young, 2001: Arctic stratus cloud properties and their effect on the surface radiation budget: Selected cases from FIRE ACE. J. Geophys. Res., 106, 15 29715 312.

    • Search Google Scholar
    • Export Citation
  • Dong, X., P. Minnis, G. G. Mace, W. L. Smith Jr., M. Poellot, R. T. Marchand, and A. D. Rapp, 2002: Comparison of stratus cloud properties deduced from surface, GOES, and aircraft data during the March 2000 ARM cloud IOP. J. Atmos. Sci., 59, 32653284.

    • Search Google Scholar
    • Export Citation
  • Donovan, D. P., 2003: Ice-cloud effective particle size parameterization based on combined lidar, radar reflectivity, and mean Doppler velocity measurements. J. Geophys. Res., 108, 4573, doi:10.1029/2003JD003469.

    • Search Google Scholar
    • Export Citation
  • Donovan, D. P., and Coauthors, 2004: The EarthCARE Simulator: Users guide and final report. European Space Agency Contract 15346/01/NL/MM, 198 pp. [Available online at http://www.pnp-software.com/earthcare_simulator/download/Sim_ug.pdf.]

    • Search Google Scholar
    • Export Citation
  • Dubovik, O., B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, 2002: Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci., 59, 590608.

    • Search Google Scholar
    • Export Citation
  • EarthCARE Mission Advisory Group, 2006: EarthCARE mission requirements document. European Space Agency Rep. EOP-SM/1567/TW, 73 pp. [Available online at http://emits.esa.int/emits-doc/ESTEC/AO-1-5790-AD4-EarthCARE_MRD_v50_A4.pdf.]

    • Search Google Scholar
    • Export Citation
  • Elouragini, S., H. Chtioui, and P. H. Flamant, 2005: Lidar remote sounding of cirrus clouds and comparison of simulated fluxes with surface and METEOSAT observations. Atmos. Res., 73, 2326.

    • Search Google Scholar
    • Export Citation
  • European Space Agency, 2004: Reports for mission selection: The six candidate Earth Explorer missions. ESA Rep. SP-1279(1), 60 pp. [Available online at http://esamultimedia.esa.int/docs/SP_1279_1_EarthCARE.pdf.]

    • Search Google Scholar
    • Export Citation
  • Han, Q., W. B. Rosow, and A. A. Lacis, 1994: Near-global survey of effective cloud droplet radii in liquid water clouds using ISCCP data. J. Climate, 7, 465497.

    • Search Google Scholar
    • Export Citation
  • Harries, J. E., and Coauthors, 2005: The Geostationary Earth Radiation Budget Project. Bull. Amer. Meteor. Soc., 86, 945960.

  • Hess, M., P. Koepke, and I. Schult, 1998: Optical properties of aerosols and clouds: The software package OPAC. Bull. Amer. Meteor. Soc., 79, 831844.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., and S. F. Kew, 2005: A 3D stochastic cloud model for investigating the radiative properties of inhomogeneous cirrus clouds. Quart. J. Roy. Meteor. Soc., 131, 25852608.

    • Search Google Scholar
    • Export Citation
  • Jacobowitz, H., and Coauthors, 1984: The Earth Radiation Budget (ERB) Experiment: An overview. J. Geophys. Res., 89, 50215038.

  • Jensen, M. P., and A. D. Del Genio, 2003: Radiative and microphysical characteristics of deep convective systems in the tropical western Pacific. J. Appl. Meteor., 42, 12341254.

    • Search Google Scholar
    • Export Citation
  • Kandel, R., and Coauthors, 1998: The ScaRaB earth radiation budget dataset. Bull. Amer. Meteor. Soc., 79, 765783.

  • Key, J. R., P. Yang, B. A. Baum, and S. L. Nasiri, 2002: Parameterization of shortwave ice cloud optical properties for various particle habits. J. Geophys. Res., 107, 4181, doi:10.1029/2001JD000742.

    • Search Google Scholar
    • Export Citation
  • Lacaze, R., J. M. Chen, J. L. Roujean, and S. G. Leblanc, 2002: Retrieval of vegetation clumping index using hot spot signatures measured by POLDER instrument. Remote Sens. Environ., 79, 8495.

    • Search Google Scholar
    • Export Citation
  • Liou, K. N., 2002: An Introduction to Atmospheric Radiation. 2nd ed. Academic Press, 583 pp.

  • Loeb, N. G., P. O. Hinton, and R. N. Green, 1999: Top-of-atmosphere albedo estimation from angular distribution models: A comparison between two approaches. J. Geophys. Res., 104D, 31 25531 260.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., F. Parol, J.-C. Buriez, and C. Vanbauce, 2000: Top-of-atmosphere albedo estimation from angular distribution models using scene identification from satellite cloud property retrievals. J. Climate, 13, 12691285.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., N. Manolo-Smith, S. Kato, W. F. Miller, S. K. Gupta, P. Minnis, and B. A. Wielicki, 2003: Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System instrument on the Tropical Rainfall Measuring Mission Satellite. Part I: Methodology. J. Appl. Meteor., 42, 240265.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., S. Kato, K. Loukachine, and N. Manalo-Smith, 2005: Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System instrument on the Terra satellite. Part I: Methodology. J. Atmos. Oceanic Technol., 22, 338351.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., B. A. Wielicki, D. R. Doelling, G. L. Smith, D. F. Keyes, S. Kato, N. Manalo-Smith, and T. Wong, 2009: Toward optimal closure of the earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748766.

    • Search Google Scholar
    • Export Citation
  • López-Baeza, E., and Coauthors, 2006: Improvement of Angular Dependence Models, Final Report. ESA/ESTEC Contract 17772/04/NL/GS, 249 pp.

    • Search Google Scholar
    • Export Citation
  • McClatchey, R. A., R. W. Fenn, J. E. Selby, F. E. Volz, and J. S. Garing, 1972: Optical properties of the atmosphere. Air Force Cambridge Research Laboratory Tech. Rep. 72-0497, 113 pp.

    • Search Google Scholar
    • Export Citation
  • Miles, N. L., J. Verlinde, and E. E. Clothiaux, 2000: Cloud droplet size distributions in low-level stratiform clouds. J. Atmos. Sci., 57, 295311.

    • Search Google Scholar
    • Export Citation
  • Rahman, H., B. Pinty, and M. M. Verstraete, 1993: Coupled Surface–Atmosphere Reflectance (CSAR) model. 2: Semi-empirical surface model usable with NOAA Advanced Very High Resolution Radiometer data. J. Geophys. Res., 98, 20 79120 801.

    • Search Google Scholar
    • Export Citation
  • Raschke, E., and W. R. Bandeen, 1970: The radiation balance of the planet Earth from radiation measurements of the satellite Nimbus II. J. Appl. Meteor., 9, 215238.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., 1976: A Short Course in Cloud Physics. Pergamon Press, 227 pp.

  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612287.

  • Smirnov, A., B. N. Holben, Y. J. Kaufman, O. Dubokic, T. F. Eck, I. Slutsker, C. Pietras, and R. N. Halthore, 2002: Optical properties of atmospheric aerosol in maritime environments. J. Atmos. Sci., 59, 501523.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 1994: Remote Sensing of the Lower Atmosphere. Oxford University Press, 523 pp.

  • Suttles, J. T., and Coauthors, 1988: Angular radiation models for earth–atmosphere system. Vol. 1—Shortwave radiation. NASA Rep. RP-1184, 144 pp.

    • Search Google Scholar
    • Export Citation
  • Suttles, J. T., R. N. Green, G. L. Smith, B. A. Wielicki, I. J. Walker, V. R. Taylor, and L. L. Stowe, 1989: Angular radiation models for earth–atmosphere system. Vol. 2—Longwave radiation. NASA Rep. RP-1184, 88 pp.

    • Search Google Scholar
    • Export Citation
  • Taylor, V. R., and L. L. Stowe, 1984: Reflectance characteristics of uniform earth and cloud surfaces derived from Nimbus-7 ERB. J. Geophys. Res., 89, 49874996.

    • Search Google Scholar
    • Export Citation
  • Torres, O., P. K. Bhartia, J. R. Herman, A. Sinyuk, P. Ginoux, and B. Holben, 2002: A long-term record of aerosol optical depth from TOMS observations and comparison to AERONET measurements. J. Atmos. Sci., 59, 398413.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., R. D. Cess, M. D. King, D. A. Randall, and E. F. Harrison, 1995: Mission to planet Earth: Role of clouds and radiation in climate. Bull. Amer. Meteor. Soc., 76, 21252153.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee III, G. L. Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth Observing System experiment. Bull. Amer. Meteor. Soc., 77, 853868.

    • Search Google Scholar
    • Export Citation
  • World Meteorological Organization, 1986: World Climate Research Programme: A preliminary cloudless standard atmosphere for radiation computation. WMO Tech. Doc. WCP-112, WMO/TD-24, 53 pp.

    • Search Google Scholar
    • Export Citation
  • Yamanouchi, T., and Coauthors, 2005: Arctic Study of Tropospheric Aerosol and Radiation (ASTAR) 2000: Arctic haze case study. Tellus, 57B, 141152.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 10 10 10
PDF Downloads 2 2 2

Radiative Flux Estimation from a Broadband Radiometer Using Synthetic Angular Models in the EarthCARE Mission Framework. Part I: Methodology

View More View Less
  • 1 Free University of Berlin, Berlin, Germany, and European Space Research and Technology Centre, European Space Agency, Noordwijk, Netherlands
  • | 2 University of Valencia, Valencia, Spain
  • | 3 Royal Netherlands Meteorological Institute, De Bilt, Netherlands
  • | 4 European Space Research and Technology Centre, European Space Agency, Noordwijk, Netherlands
Restricted access

Abstract

The forthcoming broadband radiometer (BBR) on board the Earth Clouds, Aerosols, and Radiation Explorer (EarthCARE) will provide quasi-instantaneous top-of-atmosphere radiance measurements for three different viewing angles. The role of BBR data will be to constrain the vertical radiative flux divergence profiles derived from EarthCARE measurements. Thus, the development of an instantaneous radiance-to-flux conversion procedure is of paramount importance. This paper studies the scientific basis for determining fluxes from radiances measured by the BBR instrument. This is an attempt to evaluate a possible solution and assess its potential advantages and drawbacks. The approach considered has been to construct theoretical angular distribution models (ADMs) based on the multiangular pointing feature of this instrument. This configuration provides extra information on the anisotropy of the observed radiance field, which can be employed to construct accurate inversion schemes. The proposal relies on radiative transfer calculations performed with a Monte Carlo algorithm. Considering the intrinsic difficulty associated with addressing the range of atmospheric conditions needed to determine reliable ADMs, a synthetic database has been thoroughly constructed that considers a diverse range of surface, atmospheric, and cloud conditions that are conditioned to the EarthCARE orbit and physical constraints. Three inversion methodologies have been specifically designed for the BBR flux retrieval algorithm. In particular, an optimized classical inversion procedure in which the definition of an effective radiance leads to derive fluxes with averaged errors up to 1.2 and 5.2 W m−2 for shortwave clear and cloudy sky and 1.5 W m−2 for longwave radiation scenes and a linear combination of the three instantaneous radiances from which averaged errors up to 0.4 and 2.7 W m−2 for shortwave clear and cloudy sky and 0.5 W m−2 for longwave scenes can be obtained.

Corresponding author address: Carlos Domenech, Free University of Berlin, Institute for Space Sciences, Carl-Heinrich-Becker-Weg 6-10, 12165 Berlin, Germany. E-mail: carlos.domenech@wew.fu-berlin.de

Abstract

The forthcoming broadband radiometer (BBR) on board the Earth Clouds, Aerosols, and Radiation Explorer (EarthCARE) will provide quasi-instantaneous top-of-atmosphere radiance measurements for three different viewing angles. The role of BBR data will be to constrain the vertical radiative flux divergence profiles derived from EarthCARE measurements. Thus, the development of an instantaneous radiance-to-flux conversion procedure is of paramount importance. This paper studies the scientific basis for determining fluxes from radiances measured by the BBR instrument. This is an attempt to evaluate a possible solution and assess its potential advantages and drawbacks. The approach considered has been to construct theoretical angular distribution models (ADMs) based on the multiangular pointing feature of this instrument. This configuration provides extra information on the anisotropy of the observed radiance field, which can be employed to construct accurate inversion schemes. The proposal relies on radiative transfer calculations performed with a Monte Carlo algorithm. Considering the intrinsic difficulty associated with addressing the range of atmospheric conditions needed to determine reliable ADMs, a synthetic database has been thoroughly constructed that considers a diverse range of surface, atmospheric, and cloud conditions that are conditioned to the EarthCARE orbit and physical constraints. Three inversion methodologies have been specifically designed for the BBR flux retrieval algorithm. In particular, an optimized classical inversion procedure in which the definition of an effective radiance leads to derive fluxes with averaged errors up to 1.2 and 5.2 W m−2 for shortwave clear and cloudy sky and 1.5 W m−2 for longwave radiation scenes and a linear combination of the three instantaneous radiances from which averaged errors up to 0.4 and 2.7 W m−2 for shortwave clear and cloudy sky and 0.5 W m−2 for longwave scenes can be obtained.

Corresponding author address: Carlos Domenech, Free University of Berlin, Institute for Space Sciences, Carl-Heinrich-Becker-Weg 6-10, 12165 Berlin, Germany. E-mail: carlos.domenech@wew.fu-berlin.de
Save