• Ahijevych, D. A., C. A. Davis, R. E. Carbone, and J. D. Tuttle, 2004: Initiation of precipitation episodes relative to elevated terrain. J. Atmos. Sci., 61, 27632769.

    • Search Google Scholar
    • Export Citation
  • Allamano, P., P. Claps, and F. Laio, 2009: Global warming increases flood risk in mountainous areas. Geophys. Res. Lett., 36, L24404, doi:10.1029/2009GL041395.

    • Search Google Scholar
    • Export Citation
  • Bates, B. C., Z. W. Kundzewicz, S. Wu, and J. P. Palutikof, Eds., 2008: Climate Change and Water. Tech. Paper VI, IPCC Secretariat, 200 pp. [Available online at http://www.ipcc.ch/pdf/technical-papers/climate-change-water-en.pdf.]

    • Search Google Scholar
    • Export Citation
  • Begert, M., T. Schlegel, and W. Kirchhofer, 2005: Homogeneous temperature and precipitation series of Switzerland from 1864 to 2000. Int. J. Climatol., 25, 6580.

    • Search Google Scholar
    • Export Citation
  • Beniston, M., 2005: The risks associated with climatic change in mountain regions. Global Change and Mountain Regions, U. M. Huber, H. K. M. Bugmann, and M. A. Reasoner, Eds., Springer, 511–520.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., J. D. Tuttle, D. A. Ahijevych, and S. B. Trier, 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59, 20332056.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., C. Ramis, R. Romero, and S. Alonso, 1998: A diagnostic study of three heavy precipitation episodes in the western Mediterranean region. Wea. Forecasting, 13, 102124.

    • Search Google Scholar
    • Export Citation
  • Frei, C., and C. Schär, 1998: A precipitation climatology of the Alps from high-resolution rain-gauge observations. Int. J. Climatol., 18, 873900.

    • Search Google Scholar
    • Export Citation
  • Germann, U., and J. Joss, 2004: Operational measurement of precipitation in mountainous terrain. Weather Radar: Principles and Advanced Applications, P. Meischner, Ed., Springer, 52–77.

    • Search Google Scholar
    • Export Citation
  • Germann, U., G. Galli, M. Boscacci, and M. Bolliger, 2006: Radar precipitation measurement in a mountainous region. Quart. J. Roy. Meteor. Soc., 132, 16691692.

    • Search Google Scholar
    • Export Citation
  • Germann, U., M. Berenguer, D. Sempere-Torres, and M. Zappa, 2009: REAL—Ensemble radar precipitation estimation for hydrology in a mountainous region. Quart. J. Roy. Meteor. Soc., 135, 445456.

    • Search Google Scholar
    • Export Citation
  • Grazzini, F., 2007: Predictability of large-scale flow conducive to extreme precipitation over the western Alps. Meteor. Atmos. Phys., 95, 123138.

    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., R. W. Knight, D. R. Easterling, T. R. Karl, G. C. Hegerl, and V. N. Razuvaev, 2005: Trends in intense precipitation in the climate record. J. Climate, 18, 13261350.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., A. Walser, W. Langhans, and C. Schär, 2008: Cloud resolving ensemble simulations of the August 2005 Alpine flood. Quart. J. Roy. Meteor. Soc., 134, 889904.

    • Search Google Scholar
    • Export Citation
  • Joss, J. S., and Coauthors, 1998: Operational Use of Radar for Precipitation Measurements in Switzerland. vdf Hochschulverlag AG an der ETH Zürich, 108 pp.

    • Search Google Scholar
    • Export Citation
  • Klein Tank, A. M. G., and G. P. Können, 2003: Trends in indices of daily temperature and precipitation extremes in Europe, 1946–99. J. Climate, 16, 36653680.

    • Search Google Scholar
    • Export Citation
  • Kundzewicz, Z. W., and Coauthors, 2007: Freshwater resources and their management. Climate Change 2007: Impacts, Adaptation and Vulnerability, M. L. Parry et al., Eds., Cambridge University Press, 173–210. [Available online at http://www.ipcc.ch/pdf/assessment-report/ar4/wg2/ar4-wg2-chapter3.pdf.]

    • Search Google Scholar
    • Export Citation
  • Laing, A. G., and J. M. Fritsch, 1997: The global population of mesoscale convective complexes. Quart. J. Roy. Meteor. Soc., 123, 389405.

    • Search Google Scholar
    • Export Citation
  • Lin, Y. L., S. Chiao, T. A. Wang, M. L. Kaplan, and R. P. Weglarz, 2001: Some common ingredients for heavy orographic rainfall. Wea. Forecasting, 16, 633660.

    • Search Google Scholar
    • Export Citation
  • Machguth, H., F. Paul, S. Kotlarski, and M. Hoelzle, 2009: Calculating distributed glacier mass balance for the Swiss Alps from regional climate model output: A methodical description and interpretation of the results. J. Geophys. Res., 114, D19106, doi:10.1029/2009JD011775.

    • Search Google Scholar
    • Export Citation
  • Martius, O., E. Zenklusen, C. Schwierz, and H. Davies, 2006: Episodes of Alpine heavy precipitation with an overlying elongated stratospheric intrusion: A climatology. Int. J. Climatol., 26, 11491164.

    • Search Google Scholar
    • Export Citation
  • Massacand, A. C., H. Wernli, and H. C. Davies, 1998: Heavy precipitation on the Alpine southside: An upper-level precursor. Geophys. Res. Lett., 25, 14351438.

    • Search Google Scholar
    • Export Citation
  • Moberg, A., and Coauthors, 2006: Indices for daily temperature and precipitation extremes in Europe analyzed for the period 1901–2000. J. Geophys. Res., 111, D22106, doi:10.1029/2006JD007103.

    • Search Google Scholar
    • Export Citation
  • Overeem, A., T. A. Buishand, and I. Holleman, 2009a: Extreme rainfall analysis and estimation of depth-duration-frequency curves using weather radar. Water Resour. Res., 45, W10424, doi:10.1029/2009WR007869.

    • Search Google Scholar
    • Export Citation
  • Overeem, A., I. Holleman, and A. Buishand, 2009b: Derivation of a 10-year radar-based climatology of rainfall. J. Appl. Meteor. Climatol., 48, 14481463.

    • Search Google Scholar
    • Export Citation
  • Panziera, L., and U. Germann, 2010: The relation between airflow and orographic precipitation on the southern side of the Alps as revealed by weather radar. Quart. J. Roy. Meteor. Soc., 136, 222238.

    • Search Google Scholar
    • Export Citation
  • Rudari, R., D. Entekhabi, and G. Roth, 2004: Terrain and multiple-scale interactions as factor in generating extreme precipitation events. J. Hydrometeor., 5, 390404.

    • Search Google Scholar
    • Export Citation
  • Schiesser, H., R. Houze, and H. Huntrieser, 1995: The mesoscale structure of severe precipitation systems in Switzerland. Mon. Wea. Rev., 123, 20702097.

    • Search Google Scholar
    • Export Citation
  • Schmidli, J., and C. Frei, 2005: Trends of heavy precipitation and wet and dry spells in Switzerland during the 20th century. Int. J. Climatol., 25, 753771.

    • Search Google Scholar
    • Export Citation
  • Schmidli, J., C. Schmutz, C. Frei, H. Wanner, and C. Schär, 2002: Mesoscale precipitation variability in the region of the European Alps during the 20th century. Int. J. Climatol., 22, 10491074.

    • Search Google Scholar
    • Export Citation
  • Schönwiese, C.-D., J. Rapp, T. Fuchs, and M. Denhard, 1994: Observed climate trends in Europe 1891–1990. Meteor. Z., 3, 2228.

  • Schüepp, M., 1979: Klimatologie der Schweiz, Band III: Witterungsklimatologie (Climatology of Switzerland, Volume 3: Medium-Range Weather Climatology). Schweizerische Meteorologische Anstalt, 93 pp.

    • Search Google Scholar
    • Export Citation
  • Smiatek, G., H. Kunstmann, R. Knoche, and A. Marx, 2009: Precipitation and temperature statistics in high-resolution regional climate models: Evaluation for the European Alps. J. Geophys. Res., 114, D19107, doi:10.1029/2008JD011353.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., Q. F. Jiang, M. G. Fearon, P. Tabary, M. Dorninger, J. D. Doyle, and R. Benoit, 2003: Orographic precipitation and air mass transformation: An Alpine example. Quart. J. Roy. Meteor. Soc., 129, 433454.

    • Search Google Scholar
    • Export Citation
  • Sodemann, H., and E. Zubler, 2010: Seasonal and inter-annual variability of the moisture sources for Alpine precipitation during 1995–2002. Int. J. Climatol., 30, 947961.

    • Search Google Scholar
    • Export Citation
  • Stefanicki, G., P. Talkner, and R. O. Weber, 1998: Frequency changes of weather types in the Alpine region since 1945. Theor. Appl. Climatol., 60, 4761.

    • Search Google Scholar
    • Export Citation
  • Wanner, H., E. Salvisberg, R. Rickli, and M. Schüepp, 1998: 50 years of Alpine weather statistics (AWS). Meteor. Z., 7, 99111.

  • Weisman, M. L., and J. B. Klemp, 1984: The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea. Rev., 112, 24792498.

    • Search Google Scholar
    • Export Citation
  • Widmann, M., and C. Schär, 1997: A principal component and long-term trend analysis of daily precipitation in Switzerland. Int. J. Climatol., 17, 13331356.

    • Search Google Scholar
    • Export Citation
  • Wüest, M., C. Frei, A. Altenhoff, M. Hagen, M. Litschi, and C. Schär, 2010: A gridded hourly precipitation dataset for Switzerland using rain-gauge analysis and radar-based disaggregation. Int. J. Climatol., 30, 17641775.

    • Search Google Scholar
    • Export Citation
  • Zolina, O., C. Simmer, A. Kapala, S. Bachner, S. K. Gulev, and H. Maechel, 2008: Seasonally dependent changes of precipitation extremes over Germany since 1950 from a very dense observational network. J. Geophys. Res., 113, D06110, doi:10.1029/2007JD008393.

    • Search Google Scholar
    • Export Citation
  • Zolina, O., C. Simmer, S. K. Gulev, and S. Kollet, 2010: Changing structure of European precipitation: Longer wet periods leading to more abundant rainfalls. Geophys. Res. Lett., 37, L06704, doi:10.1029/2010GL042468.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 109 44 0
PDF Downloads 52 25 0

Relationship between Radar-Estimated Precipitation and Synoptic Weather Patterns in the European Alps

View More View Less
  • 1 Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado
  • | 2 MeteoSwiss, Locarno, Switzerland
Restricted access

Abstract

A 9-yr (2000–08) analysis of precipitation characteristics for the central and western European Alps has been generated from ground-based operational weather radar data provided by the Swiss radar network. The radar-based precipitation analysis focuses on the relationship between synoptic-scale weather patterns and mesoscale precipitation distribution over complex alpine terrain. The analysis divides the Alps into six regions (each approximately 200 × 200 km2 in size)—one on the northern side, two each on the western and southern sides of the Alps, and one in the Massif Central—representing various orographic aspects and localized climates within the radar coverage area. For each region, estimated precipitation rate derived from radar data is analyzed on a seasonal basis for total daily precipitation and frequency of high-precipitation-rate events. The summer season has the highest total daily precipitation for all regions in the study, whereas median values of daily precipitation in winter are less than one-half of median daily precipitation for summer. For all regions, high-precipitation-rate events occur most frequently in the summer. Daily synoptic-scale weather patterns are associated with total daily precipitation and frequency of high precipitation rate to show that an advective synoptic-scale pattern with southerly midtropospheric flow results in the highest median and 90th-quantile values for total daily precipitation and that a convective synoptic-scale pattern results in elevated frequency of extreme-precipitation-rate events.

Corresponding author address: James V. Rudolph, University of Colorado, ATOC, UCB 311, Boulder, CO 80309-0311. E-mail: james.rudolph@colorado.edu

Abstract

A 9-yr (2000–08) analysis of precipitation characteristics for the central and western European Alps has been generated from ground-based operational weather radar data provided by the Swiss radar network. The radar-based precipitation analysis focuses on the relationship between synoptic-scale weather patterns and mesoscale precipitation distribution over complex alpine terrain. The analysis divides the Alps into six regions (each approximately 200 × 200 km2 in size)—one on the northern side, two each on the western and southern sides of the Alps, and one in the Massif Central—representing various orographic aspects and localized climates within the radar coverage area. For each region, estimated precipitation rate derived from radar data is analyzed on a seasonal basis for total daily precipitation and frequency of high-precipitation-rate events. The summer season has the highest total daily precipitation for all regions in the study, whereas median values of daily precipitation in winter are less than one-half of median daily precipitation for summer. For all regions, high-precipitation-rate events occur most frequently in the summer. Daily synoptic-scale weather patterns are associated with total daily precipitation and frequency of high precipitation rate to show that an advective synoptic-scale pattern with southerly midtropospheric flow results in the highest median and 90th-quantile values for total daily precipitation and that a convective synoptic-scale pattern results in elevated frequency of extreme-precipitation-rate events.

Corresponding author address: James V. Rudolph, University of Colorado, ATOC, UCB 311, Boulder, CO 80309-0311. E-mail: james.rudolph@colorado.edu
Save