• Aumann, H. H., and Coauthors, 2003: AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems. IEEE Trans. Geosci. Remote Sens., 41, 253264.

    • Search Google Scholar
    • Export Citation
  • Baran, A. J., 2009: A review of the light scattering properties of cirrus. J. Quant. Spectrosc. Radiat. Transf., 110, 12391260.

  • Baran, A. J., and L.-C. Labonnote, 2007: A self-consistent scattering model for cirrus. I: The solar region. Quart. J. Roy. Meteor. Soc., 133, 18991912.

    • Search Google Scholar
    • Export Citation
  • Baran, A. J., P. N. Francis, L.-C. Labonnote, and M. Doutriaux-Boucher, 2001: A scattering phase function for ice cloud: Tests of applicability using aircraft and satellite multi-angle multi-wavelength radiance measurements of cirrus. Quart. J. Roy. Meteor. Soc., 127, 23952416.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., A. J. Heymsfield, P. Yang, and S. T. Bedka, 2005a: Bulk scattering properties for the remote sensing of ice clouds. Part I: Microphysical data and models. J. Appl. Meteor., 44, 18851895.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., P. Yang, A. J. Heymsfield, S. Platnick, M. D. King, and S. T. Bedka, 2005b: Bulk scattering properties for the remote sensing of ice clouds. Part II: Narrowband models. J. Appl. Meteor., 44, 18961911.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., P. Yang, S. L. Nasiri, A. J. Heidinger, A. J. Heymsfield, and J. Li, 2007: Bulk scattering properties for the remote sensing of ice clouds. Part III: High-resolution spectral models from 100 to 3250 cm−1. J. Appl. Meteor. Climatol., 46, 423434.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., P. Yang, Y.-X. Hu, and Q. Feng, 2010: The impact of ice particle roughness on the scattering phase matrix. J. Quant. Spectrosc. Radiat. Transf., 111, 25342549, doi:10.1016/j.jqsrt.2010.07.008.

    • Search Google Scholar
    • Export Citation
  • Bi, L., P. Yang, G. Kattawar, B. A. Baum, Y.-X. Hu, D. M. Winker, R. S. Brock, and J. Q. Lu, 2009: Simulation of the color ratio associated with the backscattering of radiation by ice particles at 0.532 and 1.064 μm. J. Geophys. Res., 114, D00H08, doi:10.1029/2009JD011759.

    • Search Google Scholar
    • Export Citation
  • de Reus, M., and Coauthors, 2009: Evidence for ice particles in the tropical stratosphere from in-situ measurements. Atmos. Chem. Phys., 9, 67756792.

    • Search Google Scholar
    • Export Citation
  • Deschamps, P.-Y., F.-M. Breon, M. Leroy, A. Podaire, A. Brickaud, J.-C. Buriez, and G. Seze, 1994: The POLDER mission: Instrument characteristics and scientific objectives. IEEE Trans. Geosci. Remote Sens., 32, 598615, doi:10.1109/36.297978.

    • Search Google Scholar
    • Export Citation
  • Diner, D. J., and Coauthors, 1998: Multi-angle Imaging SpectroRadiometer (MISR) instrument description and experiment overview. IEEE Trans. Geosci. Remote Sens., 36, 10721087.

    • Search Google Scholar
    • Export Citation
  • Evans, K. F., J. Wang, P. Racette, G. Heymsfield, and L. Li, 2005: Ice cloud retrievals and analysis with the compact scanning submillimeter imaging radiometer and the cloud radar system during CRYSTAL FACE. J. Appl. Meteor., 44, 839859.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., A. J. Heymsfield, and A. Bansemer, 2006: Shattering and particle interarrival times measured by optical array probes in clouds. J. Atmos. Oceanic Technol., 23, 13571371.

    • Search Google Scholar
    • Export Citation
  • Gosse, S., D. Labrie, and P. Chylek, 1995: Refractive index of ice in the 1.4–7.8-μm spectral range. Appl. Opt., 34, 65826586.

  • Heidinger, A. K., and M. J. Pavolonis, 2009: Gazing at cirrus clouds for 25 years through a split window. Part I: Methodology. J. Appl. Meteor. Climatol., 48, 11001116.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 1986: Ice particles observed in a cirriform cloud at −83°C and implications for polar stratospheric clouds. J. Atmos. Sci., 43, 851855.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and L. M. Miloshevich, 1995: Relative humidity and temperature influences on cirrus formation and evolution: Observations from wave clouds and FIRE II. J. Atmos. Sci., 52, 43024326.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., S. Lewis, A. Bansemer, J. Iaquinta, L. M. Miloshevich, M. Kajikawa, C. Twohy, and M. R. Poellot, 2002: A general approach for deriving the properties of cirrus and stratiform ice cloud particles. J. Atmos. Sci., 59, 329.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., C. G. Schmitt, A. Bansemer, and C. Twohy, 2010: Improved representations of ice particle masses based on observations in natural clouds. J. Atmos. Sci., 67, 33033318.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., 2007: Depolarization ratio–effective lidar ratio relation: Theoretical basis for space lidar cloud phase discrimination. Geophys. Res. Lett., 34, L11812, doi:10.1029/2007GL029584.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., and Coauthors, 2007: The depolarization-attenuated backscatter relation: CALIPSO lidar measurements vs. theory. Opt. Express, 15, 53275332.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., and Coauthors, 2009: CALIPSO/CALIOP cloud phase discrimination algorithm. J. Atmos. Oceanic Technol., 26, 22932309.

  • Kindel, B. C., K. S. Schmidt, P. Pilewskie, B. A. Baum, P. Yang, and S. Platnick, 2010: Observations and modeling of cirrus shortwave spectral albedo during the Tropical Composition, Cloud and Climate Coupling Experiment. J. Geophys. Res., 115, D00J18, doi:10.1029/2009JD013127.

    • Search Google Scholar
    • Export Citation
  • Labonnote, L.-C., G. Brogniez, J.-C. Buriez, M. Doutriaux-Boucher, J.-F. Gayet, and A. Macke, 2001: Polarized light scattering by inhomogeneous hexagonal monocrystals: Validation with ADEOS-POLDER measurements. J. Geophys. Res., 106, 12 13912 154.

    • Search Google Scholar
    • Export Citation
  • Liou, K. N., 1992: Radiation and Cloud Processes in the Atmosphere—Theory, Observation, and Modeling. Oxford University Press, 487 pp.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., J. W. Hovenier, and L. D. Travis, Eds., 2000: Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications. Academic Press, 690 pp.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., L. D. Travis, and A. A. Lacis, 2002: Scattering, Absorption, and Emission of Light by Small Particles. Cambridge University Press, 445 pp.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., and Coauthors, 2007: Accurate monitoring of terrestrial aerosols and total solar irradiance: Introducing the Glory mission. Bull. Amer. Meteor. Soc., 88, 677691.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., W. P. Arnott, C. Schmitt, A. J. Baran, S. Havemann, and Q. Fu, 2001: Contributions of photon tunneling to extinction in laboratory grown hexagonal columns. J. Quant. Spectrosc. Radiat. Transf., 70, 761776.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., M. D. King, S. A. Ackerman, W. Paul Menzel, B. A. Baum, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41, 459473.

    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., 1979: Remote sounding of high clouds: I. Calculation of visible and infrared optical properties from lidar and radiometer measurements. J. Appl. Meteor., 18, 11301143.

    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., and A. C. Dilley, 1981: Remote sounding of high clouds. IV: Observed temperature variations in cirrus optical properties. J. Atmos. Sci., 38, 10691082.

    • Search Google Scholar
    • Export Citation
  • Schmitt, C. G., and A. J. Heymsfield, 2007: On the occurrence of hollow bullet rosette– and column-shaped ice crystals in midlatitude cirrus. J. Atmos. Sci., 64, 45144519.

    • Search Google Scholar
    • Export Citation
  • Schmitt, C. G., and A. J. Heymsfield, 2010: The dimensional characteristics of ice crystal aggregates from fractal geometry. J. Atmos. Sci., 67, 16051616.

    • Search Google Scholar
    • Export Citation
  • Schmitt, C. G., J. Iaquinta, and A. J. Heymsfield, 2006: The asymmetry parameter of cirrus clouds composed of hollow bullet rosette–shaped ice crystals from ray-tracing calculations. J. Appl. Meteor. Climatol., 45, 973981.

    • Search Google Scholar
    • Export Citation
  • Thuillier, G., M. Hersé, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, and H. Mandel, 2003: The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS 1-2-3 and EURECA missions. Sol. Phys., 214, 122.

    • Search Google Scholar
    • Export Citation
  • Um, J., and G. M. McFarquhar, 2007: Single-scattering properties of aggregates of bullet rosettes in cirrus. J. Appl. Meteor. Climatol., 46, 757775.

    • Search Google Scholar
    • Export Citation
  • Um, J., and G. M. McFarquhar, 2009: Single-scattering properties of aggregates of plates. Quart. J. Roy. Meteor. Soc., 135, 291304.

  • Warren, S. G., 1984: Optical constants of ice from the ultraviolet to the microwave. Appl. Opt., 23, 12061225.

  • Warren, S. G., and R. E. Brandt, 2008: Optical constants of ice from the ultraviolet to the microwave: A revised compilation. J. Geophys. Res., 113, D14220, doi:10.1029/2007JD009744.

    • Search Google Scholar
    • Export Citation
  • Westbrook, C. D., R. C. Ball, P. R. Field, and A. J. Heymsfield, 2004: Theory of growth by differential sedimentation, with application to snowflake formation. Phys. Rev. E, 70, 021403, doi:10.1103/PhysRevE.70.021403.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., and Coauthors, 2010: The CALIPSO mission: A global 3D view of aerosols and clouds. Bull. Amer. Meteor. Soc., 91, 12111229.

    • Search Google Scholar
    • Export Citation
  • Xie, Y., P. Yang, G. W. Kattawar, B. A. Baum, Y.-X. Hu, 2011: On the scattering properties of ice particle aggregates for the remote sensing of ice clouds. Appl. Opt., 50, 10651081.

    • Search Google Scholar
    • Export Citation
  • Yang, P., K. N. Liou, K. Wyser, and D. Mitchell, 2000: Parameterization of the scattering and absorption properties of individual ice crystals. J. Geophys. Res., 105, 46994718.

    • Search Google Scholar
    • Export Citation
  • Yang, P., B.-C. Gao, B. A. Baum, Y. X. Hu, W. J. Wiscombe, S.-C. Tsay, D. M. Winker, and S. L. Nasiri, 2001: Radiative properties of cirrus clouds in the infrared (8–13 μm). J. Quant. Spectrosc. Radiat. Transf., 70, 473504.

    • Search Google Scholar
    • Export Citation
  • Yang, P., B. A. Baum, A. J. Heymsfield, Y. X. Hu, H.-L. Huang, S.-C. Tsay, and S. Ackerman, 2003: Single-scattering properties of droxtals. J. Quant. Spectrosc. Radiat. Transf., 79-80, 11591169.

    • Search Google Scholar
    • Export Citation
  • Yang, P., L. Zhang, G. Hong, S. L. Nasiri, B. A. Baum, H.-L. Huang, M. D. King, and S. Platnick, 2007: Differences between collection 4 and 5 MODIS ice cloud optical/microphysical products and their impact on radiative forcing simulations. IEEE Trans. Geosci. Remote Sens., 45, 28862899.

    • Search Google Scholar
    • Export Citation
  • Yang, P., G. W. Kattawar, G. Hong, P. Minnis, and Y. Hu, 2008a: Uncertainties associated with the surface texture of ice particles in satellite-based retrieval of cirrus clouds. Part I: Single-scattering properties of ice crystals with surface roughness. IEEE Trans. Geosci. Remote Sens., 46, 19401947.

    • Search Google Scholar
    • Export Citation
  • Yang, P., and Coauthors, 2008b: Effect of cavities on the optical properties of bullet rosettes: Implications for active and passive remote sensing of ice cloud properties. J. Appl. Meteor. Climatol., 47, 23112330.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., P. Yang, G. W. Kattawar, S.-C. Tsay, B. A. Baum, Y. X. Hu, A. J. Heymsfield, and J. Reichardt, 2004: Geometrical-optics solution to light scattering by droxtal ice crystals. Appl. Opt., 43, 24902499.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., P. Yang, G. W. Kattawar, J. Riedi, L.-C. Labonnote, B. A. Baum, S. Platnick, and H. L. Huang, 2009: Influence of ice particle model on satellite ice cloud retrieval: Lessons learned from MODIS and POLDER cloud product comparison. Atmos. Chem. Phys., 9, 71157129.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 91 91 91
PDF Downloads 15 15 15

Improvements in Shortwave Bulk Scattering and Absorption Models for the Remote Sensing of Ice Clouds

View More View Less
  • 1 Space Science and Engineering Center, University of Wisconsin—Madison, Madison, Wisconsin
  • | 2 Texas A&M University, College Station, Texas
  • | 3 National Center for Atmospheric Research, Boulder, Colorado
  • | 4 NASA Langley Research Center, Hampton, Virginia
  • | 5 Goddard Earth Sciences and Technology Center, University of Maryland, Baltimore County, Baltimore, Maryland
Restricted access

Abstract

This study summarizes recent improvements in the development of bulk scattering/absorption models at solar wavelengths. The approach combines microphysical measurements from various field campaigns with single-scattering properties for nine habits including droxtals, plates, solid/hollow columns, solid/hollow bullet rosettes, and several types of aggregates. Microphysical measurements are incorporated from a number of recent field campaigns in both the Northern and Southern Hemisphere. A set of 12 815 particle size distributions is used for which Tcld ≤ −40°C. The ice water content in the microphysical data spans six orders of magnitude. For evaluation, a library of ice-particle single-scattering properties is employed for 101 wavelengths between 0.4 and 2.24 μm. The library includes the full phase matrix as well as properties for smooth, moderately roughened, and severely roughened particles. Habit mixtures are developed for generalized cirrus, midlatitude cirrus, and deep tropical convection. The single-scattering properties are integrated over particle size and wavelength using an assumed habit mixture to develop bulk scattering and absorption properties. In comparison with global Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) data, models built with severely roughened particles compare best for all habit mixtures. The assumption of smooth particles provided the largest departure from CALIOP measurements. The use of roughened rather than smooth particles to infer optical thickness and effective diameter from satellite imagery such as the Moderate Resolution Imaging Spectroradiometer (MODIS) will result in a decrease in optical thickness and an increase in particle size.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Dr. Bryan A. Baum, SSEC, University of Wisconsin—Madison, 1225 W. Dayton St., Madison, WI 53706. E-mail: bryan.baum@ssec.wisc.edu

Abstract

This study summarizes recent improvements in the development of bulk scattering/absorption models at solar wavelengths. The approach combines microphysical measurements from various field campaigns with single-scattering properties for nine habits including droxtals, plates, solid/hollow columns, solid/hollow bullet rosettes, and several types of aggregates. Microphysical measurements are incorporated from a number of recent field campaigns in both the Northern and Southern Hemisphere. A set of 12 815 particle size distributions is used for which Tcld ≤ −40°C. The ice water content in the microphysical data spans six orders of magnitude. For evaluation, a library of ice-particle single-scattering properties is employed for 101 wavelengths between 0.4 and 2.24 μm. The library includes the full phase matrix as well as properties for smooth, moderately roughened, and severely roughened particles. Habit mixtures are developed for generalized cirrus, midlatitude cirrus, and deep tropical convection. The single-scattering properties are integrated over particle size and wavelength using an assumed habit mixture to develop bulk scattering and absorption properties. In comparison with global Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) data, models built with severely roughened particles compare best for all habit mixtures. The assumption of smooth particles provided the largest departure from CALIOP measurements. The use of roughened rather than smooth particles to infer optical thickness and effective diameter from satellite imagery such as the Moderate Resolution Imaging Spectroradiometer (MODIS) will result in a decrease in optical thickness and an increase in particle size.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Dr. Bryan A. Baum, SSEC, University of Wisconsin—Madison, 1225 W. Dayton St., Madison, WI 53706. E-mail: bryan.baum@ssec.wisc.edu
Save