New Geostationary Satellite–Based Snow-Cover Algorithm

Niilo Siljamo Finnish Meteorological Institute, Helsinki, Finland

Search for other papers by Niilo Siljamo in
Current site
Google Scholar
PubMed
Close
and
Otto Hyvärinen Finnish Meteorological Institute, Helsinki, Finland

Search for other papers by Otto Hyvärinen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Snow cover plays an important role in the climate system by changing the energy and mass transfer between the atmosphere and the surface. Reliable observations of the snow cover are difficult to obtain without satellites. This paper introduces a new algorithm for satellite-based snow-cover detection that is in operational use for Meteosat in the European Organisation for the Exploitation of Meteorological Satellites Satellite Application Facility on Land Surface Analysis (LSA SAF). The new version of the product is compared with the old version and the NOAA/National Environmental Satellite, Data, and Information Service Interactive Multisensor Snow and Ice Mapping System (IMS) snow-cover product. The new version of the LSA SAF snow-cover product improves the accuracy of snow detection and is comparable to the IMS product in cloud-free conditions.

Corresponding author address: Finnish Meteorological Institute, Erik Palménin aukio 1, P.O. Box 503, FI-00101 Helsinki, Finland. E-mail: niilo.siljamo@fmi.fi

Abstract

Snow cover plays an important role in the climate system by changing the energy and mass transfer between the atmosphere and the surface. Reliable observations of the snow cover are difficult to obtain without satellites. This paper introduces a new algorithm for satellite-based snow-cover detection that is in operational use for Meteosat in the European Organisation for the Exploitation of Meteorological Satellites Satellite Application Facility on Land Surface Analysis (LSA SAF). The new version of the product is compared with the old version and the NOAA/National Environmental Satellite, Data, and Information Service Interactive Multisensor Snow and Ice Mapping System (IMS) snow-cover product. The new version of the LSA SAF snow-cover product improves the accuracy of snow detection and is comparable to the IMS product in cloud-free conditions.

Corresponding author address: Finnish Meteorological Institute, Erik Palménin aukio 1, P.O. Box 503, FI-00101 Helsinki, Finland. E-mail: niilo.siljamo@fmi.fi
Save
  • Bartholomé, E., and A. Belward, 2005: GLC2000: A new approach to global land cover mapping from earth observation data. Int. J. Remote Sens., 26, 19591977.

    • Search Google Scholar
    • Export Citation
  • Batagelj, V., and M. Bren, 1995: Comparing resemblance measures. J. Classif., 12, 7390.

  • Derrien, M., and H. LeGléau, 2005: MSG/SEVIRI cloud mask and type from SAFNWC. Int. J. Remote Sens., 26, 47074732.

  • de Wildt, M. R., G. Siez, and A. Gruen, 2007: Operational snow mapping using multitemporal Meteosat SEVIRI imagery. Remote Sens. Environ., 109, 2941.

    • Search Google Scholar
    • Export Citation
  • Dong, C., and W. Zhang, 2004: China’s current and future meteorological satellites systems. Proc. 2004 EUMETSAT Meteorological Satellite Conf., Prague, Czech Republic, EUMETSAT, 17–24.

    • Search Google Scholar
    • Export Citation
  • Dozier, J., R. O. Green, A. W. Nolin, and T. H. Painter, 2009: Interpretation of snow properties from imaging spectrometry. Remote Sens. Environ., 113 (Suppl.), S25S37, doi:10.1016/j.rse.2007.07.029.

    • Search Google Scholar
    • Export Citation
  • Drusch, M., D. Vasiljevic, and P. Viterbo, 2004: ECMWF’s global snow analysis: Assessment and revision based on satellite observations. J. Appl. Meteor., 43, 12821294.

    • Search Google Scholar
    • Export Citation
  • Dybbroe, A., K. Karlsson, and A. Thoss, 2005: NWCSAF AVHRR cloud detection and analysis using dynamic thresholds and radiative transfer modeling. Part I: Algorithm description. J. Appl. Meteor., 44, 3954.

    • Search Google Scholar
    • Export Citation
  • Hall, D., G. Riggs, V. Salomonson, N. DiGirolamo, and K. Bayr, 2002: MODIS snow products. Remote Sens. Environ., 83, 181194.

  • Hamill, T., 1999: Hypothesis tests for evaluating numerical precipitation forecasts. Wea. Forecasting, 14, 155167.

  • Helfrich, S. R., D. McNamara, B. H. Ramsay, T. Baldwin, and T. Kasheta, 2007: Enhancements to, and forthcoming developments in the Interactive Multisensor Snow and Ice Mapping System (IMS). Hydrol. Processes, 21, 15761586.

    • Search Google Scholar
    • Export Citation
  • Hyvärinen, O., K. Eerola, N. Siljamo, and J. Koskinen, 2009: Comparison of snow cover from satellite and numerical weather prediction models in Northern Hemisphere and northern Europe. J. Appl. Meteor. Climatol., 48, 11991216.

    • Search Google Scholar
    • Export Citation
  • Jolliffe, I. T., and D. B. Stephenson, Eds., 2003: Forecast Verification: A Practitioner’s Guide in Atmospheric Science. John Wiley and Sons, 240 pp.

    • Search Google Scholar
    • Export Citation
  • Kaufman, L., and P. J. Rousseeuw, 1990: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley-Interscience, 368 pp.

  • Kidder, S. Q., and H.-T. Wu, 1984: Dramatic contrast between low clouds and snow cover in daytime 3.7 μm imagery. Mon. Wea. Rev., 112, 23452346.

    • Search Google Scholar
    • Export Citation
  • Kidder, S. Q., and T. H. Vonder Haar, 1990: On the use of satellites in Molniya orbits for meteorological observation of middle and high latitudes. J. Atmos. Oceanic Technol., 7, 517522.

    • Search Google Scholar
    • Export Citation
  • Koskinen, J. T., J. T. Pulliainen, and M. T. Hallikainen, 1997: The use of ERS-1 SAR data in snow melt monitoring. IEEE Trans. Geosci. Remote Sens., 35, 601610.

    • Search Google Scholar
    • Export Citation
  • Lahtinen, P., A. Ertürk, J. Pulliainen, and J. Koskinen, 2009: Merging flat/forest and mountainous snow products for extended European area. Proc. 2009 IEEE Int. Geoscience and Remote Sensing Symp., Vol. II, Cape Town, South Africa, IEEE, 563–566.

    • Search Google Scholar
    • Export Citation
  • Li, X., R. T. Pinker, M. M. Wonsick, and Y. Ma, 2007: Toward improved satellite estimates of short-wave radiative fluxes—Focus on cloud detection over snow: 1. Methodology. J. Geophys. Res., 112, D07208, doi:10.1029/2005JD006698.

    • Search Google Scholar
    • Export Citation
  • Matikainen, L., R. Kuittinen, and J. Vepsäläinen, 2002: Estimating drainage area-based snow cover percentages from NOAA/AVHRR images. Int. J. Remote Sens., 23, 29712988.

    • Search Google Scholar
    • Export Citation
  • Matson, M., 1991: NOAA satellite snow cover data. Global Planet. Change, 4, 213218.

  • Metsämäki, S., S. Anttila, M. Huttunen, and J. Vepsäläinen, 2005: A feasible method for fractional snow cover mapping in boreal zone based on a reflectance model. Remote Sens. Environ., 95, 7795.

    • Search Google Scholar
    • Export Citation
  • Miller, S. D., T. F. Lee, and R. L. Fennimore, 2005: Satellite-based imagery techniques for daytime cloud/snow delineation from MODIS. J. Appl. Meteor., 44, 987997.

    • Search Google Scholar
    • Export Citation
  • Miller, S. D., and Coauthors, 2006: NexSat: Previewing NPOESS/VIIRS imagery capabilities. Bull. Amer. Meteor. Soc., 87, 433446.

  • Moura, A., 2006: WMO’s contribution to GEOSS and GEONetcast. WMO Bull., 55, 256260.

  • Peltoniemi, J. I., S. Kaasalainen, J. Näränen, L. Matikainen, and J. Piironen, 2005a: Measurement of directional and spectral signatures of light reflectance by snow. IEEE Trans. Geosci. Remote Sens., 43, 22942304.

    • Search Google Scholar
    • Export Citation
  • Peltoniemi, J. I., S. Kaasalainen, J. Näränen, M. Rautiainen, P. Stenberg, H. Smolander, S. Smolander, and P. Voipio, 2005b: BRDF measurement of understory vegetation in pine forests: Dwarf shrubs, lichen, and moss. Remote Sens. Environ., 94, 343354.

    • Search Google Scholar
    • Export Citation
  • Riisholgaard, L. P., 2004: The case for launching a meteorological imager in a Molniya orbit. Proc. Seventh Int. Winds Workshop, Helsinki, Finland, EUMETSAT, 323–330.

    • Search Google Scholar
    • Export Citation
  • Romanov, P., and D. Tarpley, 2003: Automated monitoring of snow cover over South America using GOES Imager data. Int. J. Remote Sens., 24, 11191125.

    • Search Google Scholar
    • Export Citation
  • Romanov, P., G. Gutman, and I. Csiszar, 2000: Automated monitoring of snow cover over North America with multispectral satellite data. J. Appl. Meteor., 39, 18661880.

    • Search Google Scholar
    • Export Citation
  • Roujean, J.-L., and Coauthors, 2009: SNORTEX (Snow Reflectance Transition Experiment): Remote sensing measurement of the dynamic properties of the boreal snow-forest in support to climate and weather forecast: Report of IOP-2008. Proc. 2009 IEEE Int. Geoscience and Remote Sensing Symp., Vol. II, Cape Town, South Africa, IEEE, 859–862.

    • Search Google Scholar
    • Export Citation
  • Salminen, M., J. Pulliainen, S. Metsämäki, A. Kontu, and H. Suokanerva, 2009: The behaviour of snow and snow-free surface reflectance in boreal forests: Implications to the performance of snow covered area monitoring. Remote Sens. Environ., 113, 907918.

    • Search Google Scholar
    • Export Citation
  • Schmit, T., M. Gunshor, W. Menzel, J. G. J. Li, and A. Bachmeier, 2005: Introducing the next-generation advanced baseline imager on GOES-R. Bull. Amer. Meteor. Soc., 86, 10791096.

    • Search Google Scholar
    • Export Citation
  • Ulaby, F. T., R. K. Moore, and A. K. Fung, 1986: From Theory to Applications. Vol. III, Microwave Remote Sensing, Active and Passive, Addison Wesley, 1097 pp.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 648 pp.

  • Wiscombe, W. J., and S. G. Warren, 1980a: Model for the spectral albedo of snow. I: Pure snow. J. Atmos. Sci., 37, 27122733.

  • Wiscombe, W. J., and S. G. Warren, 1980b: Model for the spectral albedo of snow. II: Snow containing atmospheric aerosols. J. Atmos. Sci., 37, 27342745.

    • Search Google Scholar
    • Export Citation
  • World Meteorological Organization, 1995: Manual on codes. Volume I.1, No. 306, 229 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 721 262 47
PDF Downloads 324 62 2