• Adler, R. F., , A. J. Negri, , P. R. Keehn, , and I. M. Hakkarinen, 1993: Estimation of monthly rainfall over Japan and surrounding waters from a combination of low-orbit microwave and geosynchronous IR data. J. Appl. Meteor., 32, 335356.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., , G. J. Huffman, , and P. R. Keehn, 1994: Global tropical rain rate estimates from microwave-adjusted geosynchronous IR data. Remote Sens. Rev., 11, 125152.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167.

    • Search Google Scholar
    • Export Citation
  • ESA, cited 2009: ESA/ESA GlobCover Project, led by MEDIAS-France. [Available online at http://ionia1.esrin.esa.int/index.asp.]

  • Ferraro, R., 1997: SSM/I derived global rainfall estimates for climatological applications. J. Geophys. Res., 102, 16 71516 735.

  • Ferraro, R., , N. C. Grody, , and J. A. Kogut, 1986: Classification of geophysical parameters using passive microwave satellite measurements. IEEE Trans. Geosci. Remote Sens., GE-24, 10081013.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R., , E. A. Smith, , W. Berg, , and G. Huffman, 1998: A review of screening techniques for passive microwave precipitation retrieval algorithms. J. Atmos. Sci., 55, 15831600.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R., and Coauthors, 2005: NOAA operational hydrological products derived from the AMSU. IEEE Trans. Geosci. Remote Sens., 43, 10361049.

    • Search Google Scholar
    • Export Citation
  • Gopalan, K., , N.-Y. Wang, , R. Ferraro, , and C. Liu, 2010: Status of the TRMM 2A12 land precipitation algorithm. J. Atmos. Oceanic Technol., 27, 13431354.

    • Search Google Scholar
    • Export Citation
  • Grody, N. C., 1991: Classification of snow cover and precipitation using the Special Sensor Microwave/Imager (SSM/I). J. Geophys. Res., 96, 74237435.

    • Search Google Scholar
    • Export Citation
  • Hansen, M. C., and Coauthors, 2000: Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens., 21, 13311364.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., 2006: The Global Precipitation Measurement (GPM) mission: An overview. 2006 EUMETSAT Meteorological Satellite Conf, Helsinki, Finland, EUMETSAT, P.48. [Available online at http://gpm.gsfc.nasa.gov/science/sciencetalks/Hou_EUMETSAT06.pdf.]

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc., 78, 520.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808, doi:10.1029/2009GL040000.

    • Search Google Scholar
    • Export Citation
  • Hulme, M., 1992: Rainfall changes in Africa: 1931–60 to 1961–90. Int. J. Climatol., 12, 685699.

  • Kummerow, C., and Coauthors, 2001: The evolution of the Goddard Profiling Algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40, 18011820.

    • Search Google Scholar
    • Export Citation
  • Liu, C., , E. Zipser, , D. Cesil, , S. Nesbitt, , and S. Sherwood, 2008: A cloud and precipitation feature database from 9 years of TRMM observations. J. Appl. Meteor. Climatol., 47, 27122728.

    • Search Google Scholar
    • Export Citation
  • McCollum, J., , and R. R. Ferraro, 2003: The next generation of NOAA/NESDIS SSM/I, TMI and AMSR-E microwave land rainfall algorithms. J. Geophys. Res., 108, 83828404.

    • Search Google Scholar
    • Export Citation
  • NASA, cited 2009a: NASA/MODIS Atmosphere Program. [Available online at http://modis-atmos.gsfc.nasa.gov/ECOSYSTEM/index.html.]

  • NASA, 2009b: NASA/Land Data Assimilation Systems. [Available online at http://ldas.gsfc.nasa.gov.]

  • Nesbitt, S. W., , E. J. Zipser, , and D. J. Cecil, 2000: A census of precipitation features in the tropics using TRMM: Radar, ice scattering, and lightning observations. J. Climate, 13, 40874106.

    • Search Google Scholar
    • Export Citation
  • New, M., , M. Todd, , M. Hulme, , and P. Jones, 2001: Review precipitation measurements and trends in the twentieth century. Int. J. Climatol., 21, 18991922.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394.

  • Romanov, P., , D. Tarpley, , G. Gutman, , and T. Carroll, 2003: Mapping and monitoring of the snow cover fraction over North America. J. Geophys. Res., 108, 8619, doi:10.1029/2002JD003142.

    • Search Google Scholar
    • Export Citation
  • Tian, Y., , and C. D. Peters-Lidard, 2007: Systematic anomalies over inland water bodies in satellite-based precipitation estimates. Geophys. Res. Lett., 34, L14403, doi:10.1029/2007GL030787.

    • Search Google Scholar
    • Export Citation
  • Tian, Y., , C. D. Peters-Lidard, , B. J. Choudhury, , and M. Garcia, 2007: Multitemporal analysis of TRMM-based satellite precipitation products for land data assimilation applications. J. Hydrometeor., 8, 11651183.

    • Search Google Scholar
    • Export Citation
  • Wang, N.-Y., , C. Liu, , R. Ferraro, , D. Wolff, , E. Zipser, , and C. Kummerow, 2009: TRMM 2A12 land precipitation product – Status and future plans. J. Meteor. Soc. Japan, 87, 237253.

    • Search Google Scholar
    • Export Citation
  • Wilheit, T. A., , C. Kummerow, , and R. Ferraro, 2003: Rainfall algorithms for AMSR-E. IEEE Trans. Geosci. Remote Sens., 41, 204214.

  • Xie, P., , and P. A. Arkin, 1998: Global monthly precipitation estimates from satellite-observed outgoing longwave radiation. J. Climate, 11, 137164.

    • Search Google Scholar
    • Export Citation
  • Zipser, E., , D. Cecil, , C. Liu, , S. Nesbitt, , and S. Yuter, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571071.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 19 19 12
PDF Downloads 3 3 1

Prototyping a Generic, Unified Land Surface Classification and Screening Methodology for GPM-Era Microwave Land Precipitation Retrieval Algorithms

View More View Less
  • 1 Environmental Management Technology Research Group, Institut Teknologi Bandung, Bandung, Indonesia
  • 2 Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland
  • 3 Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, and NOAA/National Environmental Satellite, Data, and Information Service, Silver Spring, Maryland
© Get Permissions
Restricted access

Abstract

A prototype generic, unified land surface classification and screening methodology for Global Precipitation Measurement (GPM)-era microwave land precipitation retrieval algorithms by using ancillary datasets is developed. As an alternative to the current radiometer-determined approach, the new methodology is shown to be promising in improving rain detection by providing better surface-cover-type information. The early prototype new surface screening scheme was applied to the current version of the Goddard profiling algorithm that is used for the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (GPROFV6). It has shown improvements in surface-cover-type classification and hence better precipitation retrieval comparisons with TRMM precipitation radar level-2 (L2) (2A25) data and the Global Precipitation Climatology Project (GPCP) version-2.1 (GPCPV2.1) datasets. The new ancillary data approach removes the current dependency of the screening step on relatively different satellite-specific channels and ensures the comparability and continuity of satellite-based precipitation products from different platforms. This is particularly important for advancing the current state of precipitation retrieval over land and for use in merged rainfall products.

Corresponding author address: Arief Sudradjat, KK Teknologi Pengelolaan Lingkungan, Fakultas Teknik Sipil dan Lingkungan, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia. E-mail: ariefs@tl.itb.ac.id

Abstract

A prototype generic, unified land surface classification and screening methodology for Global Precipitation Measurement (GPM)-era microwave land precipitation retrieval algorithms by using ancillary datasets is developed. As an alternative to the current radiometer-determined approach, the new methodology is shown to be promising in improving rain detection by providing better surface-cover-type information. The early prototype new surface screening scheme was applied to the current version of the Goddard profiling algorithm that is used for the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (GPROFV6). It has shown improvements in surface-cover-type classification and hence better precipitation retrieval comparisons with TRMM precipitation radar level-2 (L2) (2A25) data and the Global Precipitation Climatology Project (GPCP) version-2.1 (GPCPV2.1) datasets. The new ancillary data approach removes the current dependency of the screening step on relatively different satellite-specific channels and ensures the comparability and continuity of satellite-based precipitation products from different platforms. This is particularly important for advancing the current state of precipitation retrieval over land and for use in merged rainfall products.

Corresponding author address: Arief Sudradjat, KK Teknologi Pengelolaan Lingkungan, Fakultas Teknik Sipil dan Lingkungan, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia. E-mail: ariefs@tl.itb.ac.id
Save