• Alexandersson, H., 1986: A homogeneity test applied to precipitation data. Int. J. Climatol., 6, 661675.

  • Allard, J., , B. D. Keim, , J. E. Chassereau, , and D. Sathiaraj, 2008: Spuriously induced precipitation trends in the southeast United States. Theor. Appl. Climatol., 96, 173177.

    • Search Google Scholar
    • Export Citation
  • Australian Government Bureau of Meteorology, cited 2010: S.O.I. (Southern Oscillation Index) Archives: 1876 to present. [Available online at http://www.bom.gov.au/climate/current/soihtm1.shtml.]

    • Search Google Scholar
    • Export Citation
  • Buishand, T. A., 1982: Some methods for testing the homogeneity of rainfall records. J. Hydrol., 58, 1127.

  • Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Rev., 87, 367374.

  • Daly, C., , W. P. Gibson, , G. H. Taylor, , G. L. Johnson, , and P. Pasteris, 2002: A knowledge-based approach to the statistical mapping of climate. Climate Res., 22, 99113.

    • Search Google Scholar
    • Export Citation
  • Di Luzio, M., , G. L. Johnson, , C. Daly, , J. Eischeid, , and J. G. Arnold, 2008: Constructing retrospective gridded daily precipitation and temperature data sets for the conterminous United States. J. Appl. Meteor. Climatol., 47, 475497.

    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., , T. W. R. Wallis, , J. H. Lawrimore, , and R. R. Heim Jr., 2007: Effects of temperature and precipitation trends on U.S. drought. Geophys. Res. Lett., 34, L20709, doi:10.1029/2007GL031541.

    • Search Google Scholar
    • Export Citation
  • Eischeid, J. K., , C. B. Baker, , T. R. Karl, , and H. F. Diaz, 1995: The quality control of long-term climatological data using objective data analysis. J. Appl. Meteor., 34, 27872795.

    • Search Google Scholar
    • Export Citation
  • Eischeid, J. K., , P. A. Pasteris, , H. F. Diaz, , M. S. Plantico, , and N. J. Lott, 2000: Creating a serially complete, national daily time series of temperature and precipitation for the western United States. J. Appl. Meteor., 39, 15801591.

    • Search Google Scholar
    • Export Citation
  • Goodrich, G. B., , and A. W. Ellis, 2006: Climatological drought in Arizona: An analysis of indicators for guiding the governor’s drought task force. Prof. Geogr., 58, 460469.

    • Search Google Scholar
    • Export Citation
  • Grantz, K., , B. Rajagopalan, , M. Clark, , and E. Zagona, 2007: Seasonal shifts in the North American monsoon. J. Climate, 20, 19231935.

  • Groisman, P. Ya., , and D. R. Easterling, 1994: Variability and trends of total precipitation and snowfall over the United States and Canada. J. Climate, 7, 184205.

    • Search Google Scholar
    • Export Citation
  • Grundstein, A., 2008: Assessing climate change in the contiguous United States using a modified Thornthwaite climate classification scheme. Prof. Geogr., 60, 398412.

    • Search Google Scholar
    • Export Citation
  • Guttman, N. B., , and R. G. Quayle, 1996: A historical perspective of U.S. climate divisions. Bull. Amer. Meteor. Soc., 77, 293303.

  • Hulme, M., , and M. New, 1997: Dependence of large-scale precipitation climatologies on temporal and spatial sampling. J. Climate, 10, 10991113.

    • Search Google Scholar
    • Export Citation
  • Jones, P. D., , and M. Hulme, 1996: Calculating regional climatic time series for temperature and precipitation: Methods and illustrations. Int. J. Climatol., 16, 361377.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., , and R. W. Knight, 1998: Secular trends of precipitation amount, frequency, and intensity in the United States. Bull. Amer. Meteor. Soc., 79, 231241.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., , R. G. Quayle, , and P. Ya. Groisman, 1993: Detecting climate variations and change: New challenges for observing and data management systems. J. Climate, 6, 14811494.

    • Search Google Scholar
    • Export Citation
  • Keim, B. D., , M. R. Fischer, , and A. M. Wilson, 2005: Are there spurious precipitation trends in the United States climate division database? Geophys. Res. Lett., 32, L04702, doi:10.1029/2004GL021985.

    • Search Google Scholar
    • Export Citation
  • Kumar, M., , and C. J. Duffy, 2009: Detecting hydroclimatic change using spatio-temporal analysis of time series in Colorado River Basin. J. Hydrol., 374, 115, doi:10.1016/j.jhydrol.2009.03.039.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., , K. Andsager, , and D. R. Easterling, 1999: Long-term trends in extreme precipitation events over the conterminous United States and Canada. J. Climate, 12, 25152527.

    • Search Google Scholar
    • Export Citation
  • Kurtzman, D., , and B. R. Scanlon, 2007: El Niño–Southern Oscillation and Pacific Decadal Oscillation impacts on precipitation in the southern and central United States: Evaluation of spatial distribution and predictions. Water Resour. Res., 43, W10427, doi:10.1029/2007WR005863.

    • Search Google Scholar
    • Export Citation
  • Leathers, D. J., , A. J. Grundstein, , and A. W. Ellis, 2000: Growing season moisture deficits across the northeastern United States. Climate Res., 14, 4355.

    • Search Google Scholar
    • Export Citation
  • McCabe, G. L., , M. A. Palecki, , and J. L. Betancourt, 2004: Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc. Natl. Acad. Sci. USA, 101, 41364141.

    • Search Google Scholar
    • Export Citation
  • McKee, T. B., , N. J. Doesken, , and J. Kleist, 1993: The relationship of drought frequency and duration to time scale. Preprints, Eighth Conf. on Applied Climatology, Anaheim, CA, Amer. Meteor. Soc., 179–184.

    • Search Google Scholar
    • Export Citation
  • Menne, M. J., , C. M. Williams Jr., , and R. S. Vose, 2009: The U.S. Historical Climatology Network monthly temperature data, version 2. Bull. Amer. Meteor. Soc., 90, 993997.

    • Search Google Scholar
    • Export Citation
  • Metcalfe, J. R., , B. Routledge, , and K. Devine, 1997: Rainfall measurement in Canada: Changing observational methods and archive adjustment procedures. J. Climate, 10, 92101.

    • Search Google Scholar
    • Export Citation
  • Mosmann, V., , A. Castro, , R. Fraile, , J. Dessens, , and J. L. Sanchez, 2004: Detection of statistically significant trends in the summer precipitation of mainland Spain. Atmos. Res., 70, 4353.

    • Search Google Scholar
    • Export Citation
  • New, M., , M. Hulme, , and P. D. Jones, 1999: Representing twentieth-century space–time climate variability. Part I: Development of a 1961–90 mean monthly terrestrial climatology. J. Climate, 12, 829856.

    • Search Google Scholar
    • Export Citation
  • Paulhus, J. L. H., , and M. A. Kohler, 1952: Interpolation of missing precipitation records. Mon. Wea. Rev., 80, 129133.

  • Peterson, T. C., , and D. R. Easterling, 1994: Creation of homogenous composite climatological reference series. Int. J. Climatol., 14, 671679.

    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., , and R. S. Vose, 1997: An overview of the Global Historical Climatology Network temperature database. Bull. Amer. Meteor. Soc., 78, 28372850.

    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., and Coauthors, 1998: Homogeneity adjustments of in situ atmospheric climate data: A review. Int. J. Climatol., 18, 14931517.

    • Search Google Scholar
    • Export Citation
  • Pielke, R., Sr., and Coauthors, 2007: Documentation of uncertainties and bias associated with surface temperature measurement sites for climate change assessment. Bull. Amer. Meteor. Soc., 88, 913928.

    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., , J. A. Howe, , and K. E. Kunkel, 2009: How spatially coherent and statistically robust are temporal changes in extreme precipitation in the contiguous USA? Int. J. Climatol., 29, 3145, doi:10.1002/joc.1696.

    • Search Google Scholar
    • Export Citation
  • Redmond, K. T., , and R. W. Koch, 1991: Surface climate and streamflow variability in the western United States and their relationship to large-scale circulation indices. Water Resour. Res., 27, 23812399.

    • Search Google Scholar
    • Export Citation
  • Seager, R., , A. Tzanova, , and J. Nakamura, 2009: Drought in the southeastern United States: Causes, variability over the last millennium, and the potential for future hydroclimate change. J. Climate, 22, 50215045.

    • Search Google Scholar
    • Export Citation
  • Serbin, S. P., , and C. J. Kucharik, 2009: Spatiotemporal mapping of temperature and precipitation for the development of a multidecadal climatic data set for Wisconsin. J. Appl. Meteor. Climatol., 48, 742757.

    • Search Google Scholar
    • Export Citation
  • Sheppard, P. R., , A. C. Comrie, , G. D. Packin, , K. Angersbach, , and M. K. Hughes, 2002: The climate of the U.S. Southwest. Climate Res., 21, 219238.

    • Search Google Scholar
    • Export Citation
  • Suhaila, J., , M. D. Sayang, , and A. A. Jemain, 2008: Revised spatial weighting methods for estimation of missing rainfall data. Asia-Pac. J. Atmos. Sci., 44, 93104.

    • Search Google Scholar
    • Export Citation
  • Sun, B., , and T. C. Peterson, 2005: Estimating temperature normals for USCRN stations. Int. J. Climatol., 25, 18091817.

  • Svoboda, M., and Coauthors, 2002: The drought monitor. Bull. Amer. Meteor. Soc., 83, 11811190.

  • Trenberth, K. E., and Coauthors, 2007: Observations: Surface and atmospheric climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 235–336.

    • Search Google Scholar
    • Export Citation
  • Young, K. C., 1992: A three-way model for interpolating for monthly precipitation values. Mon. Wea. Rev., 120, 25612569.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 33 33 12
PDF Downloads 12 12 4

A New Homogenized Climate Division Precipitation Dataset for Analysis of Climate Variability and Climate Change

View More View Less
  • 1 Department of Atmospheric Sciences, Texas A&M University, College Station, Texas
© Get Permissions
Restricted access

Abstract

A new homogeneous climate division monthly precipitation dataset [based on full network estimated precipitation (FNEP)] was created as an alternative to the National Climatic Data Center (NCDC) climate division dataset. These alternative climate division monthly precipitation values were estimated using an equal-weighted average of Cooperative Observer Program stations that contained serially complete time series. Missing station observations were estimated by a procedure that was optimized through testing on U.S. Historical Climate Network stations. Inhomogeneities in the NCDC dataset arise from two principal causes. The pre-1931 estimation of NCDC climate division monthly precipitation from statewide averages led to a significant time series discontinuity in several climate divisions. From 1931 to the present, NCDC climate division averages have been calculated from a subset of available station data within each climate division, and temporal changes in the location of available stations have caused artificial changes in the time series. The FNEP climate division dataset is recommended over the NCDC dataset for studies involving climate trends or long-term climate variability. According to the FNEP data, the 1895–2009 linear precipitation trend is positive across most of the United States, and trends exceed 10% per century across the southern plains and the Corn Belt. Remaining inhomogeneities from changes in gauge technology and station location may be responsible for an artificial trend of 1%–3% per century.

Corresponding author address: D. Brent McRoberts, Dept. of Atmospheric Sciences, Texas A&M University, M.S. 3150, College Station, TX 77843-3150. E-mail: mcrobert@tamu.edu

Abstract

A new homogeneous climate division monthly precipitation dataset [based on full network estimated precipitation (FNEP)] was created as an alternative to the National Climatic Data Center (NCDC) climate division dataset. These alternative climate division monthly precipitation values were estimated using an equal-weighted average of Cooperative Observer Program stations that contained serially complete time series. Missing station observations were estimated by a procedure that was optimized through testing on U.S. Historical Climate Network stations. Inhomogeneities in the NCDC dataset arise from two principal causes. The pre-1931 estimation of NCDC climate division monthly precipitation from statewide averages led to a significant time series discontinuity in several climate divisions. From 1931 to the present, NCDC climate division averages have been calculated from a subset of available station data within each climate division, and temporal changes in the location of available stations have caused artificial changes in the time series. The FNEP climate division dataset is recommended over the NCDC dataset for studies involving climate trends or long-term climate variability. According to the FNEP data, the 1895–2009 linear precipitation trend is positive across most of the United States, and trends exceed 10% per century across the southern plains and the Corn Belt. Remaining inhomogeneities from changes in gauge technology and station location may be responsible for an artificial trend of 1%–3% per century.

Corresponding author address: D. Brent McRoberts, Dept. of Atmospheric Sciences, Texas A&M University, M.S. 3150, College Station, TX 77843-3150. E-mail: mcrobert@tamu.edu
Save