• Awaka, J., , T. Iguchi, , and K. Okamoto, 1998: Early results on rain type classification by the Tropical Rainfall Measuring Mission (TRMM) precipitation radar. Proc. Eighth URSI Commission F Triennial Open Symp., Aveiro, Portugal, International Union of Radio Science, 143–146.

    • Search Google Scholar
    • Export Citation
  • Black, R. A., , and J. Hallett, 1986: Observations of the distribution of ice in hurricanes. J. Atmos. Sci., 43, 802822.

  • Black, R. A., , and J. Hallett, 1999: Electrification of the hurricane. J. Atmos. Sci., 56, 20042028.

  • Boccippio, D. J., , W. J. Koshak, , and R. J. Blakeslee, 2002: Performance assessment of the optical transient detector and lightning imaging sensor. Part I: Predicted diurnal variability. J. Atmos. Oceanic Technol., 19, 13181332.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., , C. S. Velden, , W. E. Bracken, , J. Molinari, , and P. G. Black, 2000: Environmental influences on the rapid intensification of Hurricane Opal (1995) over the Gulf of Mexico. Mon. Wea. Rev., 128, 322352.

    • Search Google Scholar
    • Export Citation
  • Browner, S. P., , W. L. Woodley, , and C. G. Griffith, 1977: Diurnal oscillation of the area of cloudiness associated with tropical storms. Mon. Wea. Rev., 105, 856864.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., , and E. J. Zipser, 1999: Relationships between tropical cyclone intensity and satellite-based indicators of inner core convection: 85-GHz ice-scattering signature and lightning. Mon. Wea. Rev., 127, 103123.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., , and E. J. Zipser, 2002: Reflectivity, ice scattering, and lightning characteristics of hurricane eyewalls and rainbands. Part II: Intercomparison of observations. Mon. Wea. Rev., 130, 785801.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., , E. J. Zipser, , and S. W. Nesbitt, 2002: Reflectivity, ice scattering, and lightning characteristics of hurricane eyewalls and rainbands. Part I: Quantitative description. Mon. Wea. Rev., 130, 769784.

    • Search Google Scholar
    • Export Citation
  • Cerveny, R. S., , and R. C. Balling Jr., 2005: Variations in the diurnal character of tropical cyclone wind speeds. Geophys. Res. Lett., 32, L06706, doi:10.1029/2004GL021177.

    • Search Google Scholar
    • Export Citation
  • Douglas, A. V., , and P. J. Englehart, 2001: The role of eastern North Pacific tropical storms in the rainfall climatology of western Mexico. Int. J. Climatol., 21, 13571370.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., , M. L. Salby, , and F. Sassi, 2002: The distribution and influence of convection in the tropical tropopause region. J. Geophys. Res., 107, 4080, doi:10.1029/2001JD001048.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700.

  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., , T. Kozu, , R. Meneghini, , J. Awaka, , and K. Okamoto, 2000: Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor., 39, 20382052.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., , and E. J. Zipser, 2010: Contribution of tropical cyclones to the global precipitation from eight seasons of TRMM data: Regional, seasonal, and interannual variations. J. Climate, 23, 15261543.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J., , and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108.

    • Search Google Scholar
    • Export Citation
  • Kelley, O. A., , J. Stout, , and J. B. Halverson, 2004: Tall precipitation cells in tropical cyclones eyewalls are associated with tropical cyclone intensification. Geophys. Res. Lett., 31, L24112, doi:10.1029/2004GL021616.

    • Search Google Scholar
    • Export Citation
  • Kelley, O. A., , J. Stout, , and J. B. Halverson, 2005: Hurricane intensification detected by continuously monitoring tall precipitation in the eyewall. Geophys. Res. Lett., 32, L20819, doi:10.1029/2005GL023583.

    • Search Google Scholar
    • Export Citation
  • Kerns, B., , and E. Zipser, 2009: Four years of tropical ERA-40 vorticity maxima tracks. Part II: Differences between developing and nondeveloping disturbances. Mon. Wea. Rev., 137, 25762591.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., 2002: Daily hurricane variability inferred from GOES infrared imagery. Mon. Wea. Rev., 130, 22602270.

  • Kummerow, C., , W. S. Olson, , and L. Giglio, 1996: A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors. IEEE Trans. Geosci. Remote Sens., 34, 12131232.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., , W. Barnes, , T. Kozu, , J. Shiue, , and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2001: The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40, 18011820.

    • Search Google Scholar
    • Export Citation
  • Laing, A. G., , and J. M. Fritsch, 1997: The global population of mesoscale convective complexes. Quart. J. Roy. Meteor. Soc., 123, 389405.

    • Search Google Scholar
    • Export Citation
  • Lajoie, F. A., , and I. J. Butterworth, 1984: Oscillation of high-level cirrus and heavy precipitation around Australian region tropical cyclones. Mon. Wea. Rev., 112, 535544.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and Coauthors, 2004: The Atlantic hurricane database reanalysis project: Documentation for the 1851–1910 alterations and additions to the HURDAT database. Hurricanes and Typhoons: Past, Present, and Future, R. J. Murnane and K.-B. Liu, Eds., Columbia University Press, 177–221.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and Coauthors, 2008: A reanalysis of the 1911–20 Atlantic hurricane database. J. Climate, 21, 21382168.

  • Larson, J., , Y. Zhou, , and R. W. Higgins, 2005: Characteristics of landfalling tropical cyclones in the United States and Mexico: Climatology and interannual variability. J. Climate, 18, 12471262.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., , and E. J. Zipser, 1980: Cumulonimbus vertical velocity events in GATE. Part I: Diameter intensity and mass flux. J. Atmos. Sci., 37, 24442457.

    • Search Google Scholar
    • Export Citation
  • Liu, C., cited 2007: University of Utah TRMM precipitation and cloud feature database description, v1.0. [Available online at http://trmm.chpc.utah.edu/docs/trmm_database_description_v1.0.pdf.]

    • Search Google Scholar
    • Export Citation
  • Liu, C., , and E. J. Zipser, 2005: Global distribution of convection penetrating the tropical tropopause. J. Geophys. Res., 110, D23104, doi:10.1029/2005JD006063.

    • Search Google Scholar
    • Export Citation
  • Liu, C., , and E. J. Zipser, 2008: Diurnal cycles of precipitation, clouds, and lightning in the tropics from 9 years of TRMM observations. Geophys. Res. Lett., 35, L04819, doi:10.1029/2007GL032437.

    • Search Google Scholar
    • Export Citation
  • Liu, C., , E. J. Zipser, , and S. W. Nesbitt, 2007: Global distribution of tropical deep convection: Different perspectives from TRMM infrared and radar data. J. Climate, 20, 489503.

    • Search Google Scholar
    • Export Citation
  • Liu, C., , E. J. Zipser, , D. J. Cecil, , S. W. Nesbitt, , and S. Sherwood, 2008: A cloud and precipitation feature database from 9 years of TRMM observations. J. Appl. Meteor. Climatol., 47, 27122728.

    • Search Google Scholar
    • Export Citation
  • Lonfat, M., , F. D. Marks, , and S. S. Chen, 2004: Precipitation distribution in tropical cyclones using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager: A global perspective. Mon. Wea. Rev., 132, 16451660.

    • Search Google Scholar
    • Export Citation
  • Lonfat, M., , R. Rogers, , T. Marchok, , and F. D. Marks, 2007: A parametric model for predicting hurricane rainfall. Mon. Wea. Rev., 135, 30863097.

    • Search Google Scholar
    • Export Citation
  • Lucas, C., , E. J. Zipser, , and M. A. LeMone, 1994: Vertical velocity in oceanic convection off tropical Australia. J. Atmos. Sci., 51, 31833193.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., , and R. A. Houze, 1993: Cloud clusters and superclusters over the oceanic warm pool. Mon. Wea. Rev., 121, 13981416.

  • Mohr, K. I., , and E. J. Zipser, 1996: Defining mesoscale convective systems by their 85-GHz ice-scattering signatures. Bull. Amer. Meteor. Soc., 77, 11791189.

    • Search Google Scholar
    • Export Citation
  • Muramatsu, T., 1983: Diurnal variations of satellite-measured TBB areal distribution and eye diameter of mature typhoons. J. Meteor. Soc. Japan, 61, 7790.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., , and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16, 14561475.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., , E. J. Zipser, , and D. J. Cecil, 2000: A census of precipitation features in the tropics using TRMM: Radar, ice scattering, and lightning observations. J. Climate, 13, 40874106.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., , R. Cifelli, , and S. A. Rutledge, 2006: Storm morphology and rainfall characteristics of TRMM precipitation features. Mon. Wea. Rev., 134, 27022721.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., , and R. W. Henderson, 1986: Global distribution of midnight lightning: September 1977 to August 1978. Mon. Wea. Rev., 114, 26402653.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., , and S. A. Rutledge, 2001: Regional variability in tropical convection: Observations from TRMM. J. Climate, 14, 35663586.

    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., 2000: Loss of life in the United States associated with recent Atlantic tropical cyclones. Bull. Amer. Meteor. Soc., 81, 20652074.

    • Search Google Scholar
    • Export Citation
  • Shay, L. K., , G. J. Goni, , and P. G. Black, 2000: Effects of a warm oceanic feature on Hurricane Opal. Mon. Wea. Rev., 128, 13661383.

  • Simpson, J., , J. B. Halverson, , B. S. Ferrier, , W. A. Peterson, , R. H. Simpson, , R. Blakeslee, , and S. L. Durden, 1998: On the role of “hot towers” in tropical cyclone formation. Meteor. Atmos. Phys., 67, 1535.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., , H. G. Goodman, , and R. E. Hood, 1989: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6, 254273.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., , R. A. Houze Jr., , and S. Yuter, 1995: Climatological characterization of three-dimension storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34, 19782007.

    • Search Google Scholar
    • Export Citation
  • Steranka, J., , E. B. Rodgers, , and R. C. Gentry, 1984: The diurnal variation of Atlantic Ocean tropical cyclone cloud distribution inferred from geostationary satellite infrared measurements. Mon. Wea. Rev., 112, 23382344.

    • Search Google Scholar
    • Export Citation
  • Steranka, J., , E. B. Rodgers, , and R. C. Gentry, 1986: The relationship between satellite measured convective bursts and tropical cyclone intensification. Mon. Wea. Rev., 114, 15391546.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35, 15361548.

  • Tuleya, R. E., , M. DeMaria, , and R. J. Kuligowski, 2007: Evaluation of GFDL and simple statistical model rainfall forecasts for U.S. landfalling tropical storms. Wea. Forecasting, 22, 5670.

    • Search Google Scholar
    • Export Citation
  • Weng, F., , L. Zhao, , R. Ferraro, , G. Poe, , X. Li, , and N. Grody, 2003: Advanced Microwave Sounding Unit cloud and precipitation algorithms. Radio Sci., 38, 80688079.

    • Search Google Scholar
    • Export Citation
  • Xu, W., , E. J. Zipser, , C. Liu, , and H. Jiang, 2010: On the relationships between lightning frequency and thundercloud parameters of regional precipitation systems. J. Geophys. Res., 115, D12203, doi:10.1029/2009JD013385.

    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., , and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784801.

  • Zhao, L., , and F. Weng, 2002: Retrieval of ice cloud parameters using the Advanced Microwave Sounding Unit. J. Appl. Meteor., 41, 384395.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1994: Deep cumulonimbus cloud systems in the tropics with and without lightning. Mon. Wea. Rev., 122, 18371851.

  • Zipser, E. J., , D. Cecil, , C. Liu, , S. Nesbitt, , and D. Yorty, 2006: Where are the most intense thunderstorms on earth? Bull. Amer. Meteor. Soc., 87, 10571071.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 35 35 21
PDF Downloads 37 37 16

A TRMM-Based Tropical Cyclone Cloud and Precipitation Feature Database

View More View Less
  • 1 Department of Earth and Environment, Florida International University, Miami, Florida
  • 2 Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah
© Get Permissions
Restricted access

Abstract

The Tropical Rainfall Measuring Mission (TRMM) satellite has provided invaluable data for tropical cyclone (TC) research since December 1997. The challenge, however, is how to analyze and efficiently utilize all of the information from several instruments on TRMM that observe the same target. In this study, a tropical cyclone precipitation, cloud, and convective cell feature (TCPF) database has been developed by using observations of the TRMM precipitation radar (PR), Microwave Imager (TMI), Visible and Infrared Scanner (VIRS), Lightning Imaging System (LIS), and the TRMM 3B42 rainfall product. The database is based on an event-based method that analyzes the measurements from multiple sensors. This method condenses the original information of pixel-level measurements into the properties of events, which can significantly increase the efficiency of searching and sorting the observed historical TCs. With both convective and rainfall properties included, the database offers the potential to aid the research aiming to improve both TC intensification and rainfall forecasts. Using the TRMM TCPF database, regional variations of TC convection and diurnal variations of TC rainfall are examined. In terms of absolute number, the northwest Pacific Ocean basin has the deepest and most intense TCPFs according to IR, radar, and 85-GHz microwave measurements. However, the North Atlantic TCPFs appear to have the highest lightning production. Globally, TC rainfall has a maximum at 0430–0730 local solar time (LST) and a minimum around 1930–2230 LST. However, after separating ocean from land, a distinct difference is seen. Over land, the diurnal variation of TC rainfall shows double peaks: one around 0130–0730 LST and the other at 1630–1930 LST. The minimum is at 1030–1330 LST.

Corresponding author address: Dr. Haiyan Jiang, Department of Earth and Environment, Florida International University, 11200 SW 8th Street, PC-342B, Miami, FL 33199. E-mail: haiyan.jiang@fiu.edu

Abstract

The Tropical Rainfall Measuring Mission (TRMM) satellite has provided invaluable data for tropical cyclone (TC) research since December 1997. The challenge, however, is how to analyze and efficiently utilize all of the information from several instruments on TRMM that observe the same target. In this study, a tropical cyclone precipitation, cloud, and convective cell feature (TCPF) database has been developed by using observations of the TRMM precipitation radar (PR), Microwave Imager (TMI), Visible and Infrared Scanner (VIRS), Lightning Imaging System (LIS), and the TRMM 3B42 rainfall product. The database is based on an event-based method that analyzes the measurements from multiple sensors. This method condenses the original information of pixel-level measurements into the properties of events, which can significantly increase the efficiency of searching and sorting the observed historical TCs. With both convective and rainfall properties included, the database offers the potential to aid the research aiming to improve both TC intensification and rainfall forecasts. Using the TRMM TCPF database, regional variations of TC convection and diurnal variations of TC rainfall are examined. In terms of absolute number, the northwest Pacific Ocean basin has the deepest and most intense TCPFs according to IR, radar, and 85-GHz microwave measurements. However, the North Atlantic TCPFs appear to have the highest lightning production. Globally, TC rainfall has a maximum at 0430–0730 local solar time (LST) and a minimum around 1930–2230 LST. However, after separating ocean from land, a distinct difference is seen. Over land, the diurnal variation of TC rainfall shows double peaks: one around 0130–0730 LST and the other at 1630–1930 LST. The minimum is at 1030–1330 LST.

Corresponding author address: Dr. Haiyan Jiang, Department of Earth and Environment, Florida International University, 11200 SW 8th Street, PC-342B, Miami, FL 33199. E-mail: haiyan.jiang@fiu.edu
Save