• Bess, T. D., , G. L. Smith, , T. P. Charlock, , and F. G. Rose, 1992: Annual and interannual variations of Earth-emitted radiation based on a 10-year data set. J. Geophys. Res., 97, 12 82512 835.

    • Search Google Scholar
    • Export Citation
  • Bloom, S., and Coauthors, 2005: Documentation and validation of the Goddard Earth Observing System (GEOS) Data Assimilation System–Version 4. NASA Tech. Rep. NASA/TM-2005-104606, Vol. 26, 187 pp.

    • Search Google Scholar
    • Export Citation
  • Cox, S. J., , P. W. Stackhouse, , S. K. Gupta, , J. C. Mikovitz, , and T. Zhang, 2006: The NASA/GEWEX Surface Radiation Budget project: Overview and analysis. Extended Abstracts, 12th Conf. on Atmospheric Radiation, Madison, WI, Amer. Meteor. Soc., 10.1.

    • Search Google Scholar
    • Export Citation
  • Darnell, W. L., , W. F. Staylor, , S. K. Gupta, , and F. M. Denn, 1988: Estimation of surface insolation using sun-synchronous satellite data. J. Climate, 1, 820835.

    • Search Google Scholar
    • Export Citation
  • Darnell, W. L., , W. F. Staylor, , S. K. Gupta, , N. A. Ritchey, , and A. C. Wilber, 1992: Seasonal variation of surface radiation budget derived from International Satellite Cloud Climatology Project C1 data. J. Geophys. Res., 97, 15 74115 760.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., , K. N. Liou, , M. C. Cribb, , T. P. Charlock, , and A. Grossman, 1997: Multiple scattering parameterization in thermal infrared radiative transfer. J. Atmos. Sci., 54, 27992812.

    • Search Google Scholar
    • Export Citation
  • Gupta, S. K., 1989: A parameterization for longwave surface radiation from sun-synchronous satellite data. J. Climate, 2, 305320.

  • Gupta, S. K., , W. F. Staylor, , W. L. Darnell, , A. C. Wilber, , and N. A. Ritchey, 1993: Seasonal variation of surface and atmospheric cloud radiative forcing over the globe derived from satellite data. J. Geophys. Res., 98, 20 76120 778.

    • Search Google Scholar
    • Export Citation
  • Gupta, S. K., , N. A. Ritchey, , A. C. Wilber, , C. H. Whitlock, , G. G. Gibson, , and P. W. Stackhouse, 1999: A climatology of surface radiation budget derived from satellite data. J. Climate, 12, 26912710.

    • Search Google Scholar
    • Export Citation
  • Gupta, S. K., , P. W. Stackhouse, , S. J. Cox, , J. C. Mikovitz, , and T. Zhang, 2006: Surface Radiation Budget Project completes 22-year data set. GEWEX News, Vol. 16, No. 4, International GEWEX Project Office, Silver Spring, MD, 12–13.

    • Search Google Scholar
    • Export Citation
  • Hatzianastassiou, N., , C. Matsukas, , D. Hatzidimitriou, , C. Pavlakis, , M. Drakakis, , and I. Vardavas, 2004: Ten year radiation budget of the earth: 1984–93. Int. J. Climatol., 24, 17851802.

    • Search Google Scholar
    • Export Citation
  • Hatzianastassiou, N., , C. Matsukas, , A. Fotiadi, , K. G. Pavlakis, , E. Drakakis, , D. Hatzidimitriou, , and I. Vardavas, 2005: Global distribution of Earth’s surface shortwave radiation budget. Atmos. Chem. Phys., 5, 28472867.

    • Search Google Scholar
    • Export Citation
  • Hsu, C.-P. F., , and J. M. Wallace, 1976a: The global distribution of the annual and semiannual cycles in precipitation. Mon. Wea. Rev., 104, 10931101.

    • Search Google Scholar
    • Export Citation
  • Hsu, C.-P. F., , and J. M. Wallace, 1976b: The global distribution of the annual and semiannual cycles in sea level pressure. Mon. Wea. Rev., 104, 15971601.

    • Search Google Scholar
    • Export Citation
  • Pinker, R., , and I. Laszlo, 1992: Modeling surface solar irradiance for satellite applications on a global scale. J. Appl. Meteor., 31, 194211.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., 1986: Scientific use of surface radiation budget data for climate studies. Surface Radiation Budget for Climate Application, Reference Publ. 1169, J. T. Suttles and G. Ohring, Eds., NASA, 58–86.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., , and R. A. Schiffer, 1991: ISSCP cloud data products. Bull. Amer. Meteor. Soc., 72, 220.

  • Rossow, W. B., , and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612287.

  • Smith, G. L., , D. Rutan, , T. P. Charlock, , and T. D. Bess, 1990: Annual and interannual variations of absorbed solar radiation based on a 10-year data set. J. Geophys. Res., 95, 16 63916 652.

    • Search Google Scholar
    • Export Citation
  • Smith, G. L., , A. C. Wilber, , S. K. Gupta, , and P. W. Stackhouse, 2002: Surface radiation budget and climate classification. J. Climate, 15, 11751188.

    • Search Google Scholar
    • Export Citation
  • Smith, G. L., , P. E. Mlynczak, , D. A. Rutan, , and T. Wong, 2008: Comparison of the diurnal cycle of outgoing longwave radiation from a climate model with results from ERBE. J. Appl. Meteor. Climatol., 47, 31883201.

    • Search Google Scholar
    • Export Citation
  • Stackhouse, P. W., , S. K. Gupta, , S. J. Cox, , J. C. Mikovitz, , T. Zhang, , and M. Chiacchio, 2004: Twelve-year surface radiation budget data set. GEWEX News, Vol. 14, No. 4, International GEWEX Project Office, Silver Spring, MD, 10–12.

    • Search Google Scholar
    • Export Citation
  • WCRP-69, 1992: Radiation and climate: Report of the fourth session of the WCRP working group on radiative fluxes. WMO/TD-471.

  • White, G. H., , and J. M. Wallace, 1978: The global distribution of the annual and semiannual cycles in surface temperature. Mon. Wea. Rev., 106, 901906.

    • Search Google Scholar
    • Export Citation
  • Whitlock, C. H., and Coauthors, 1995: First global WCRP shortwave surface radiation budget dataset. Bull. Amer. Meteor. Soc., 76, 905922.

    • Search Google Scholar
    • Export Citation
  • Wilber, A. C., , G. L. Smith, , S. K. Gupta, , and P. W. Stackhouse, 2006: Annual cycles of surface shortwave radiative fluxes. J. Climate, 19, 535547.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., , W. B. Rossow, , and P. W. Stackhouse Jr., 2006: Comparison of different global information sources used in surface radiative flux calculation: Radiative properties of the near-surface atmosphere. J. Geophys. Res., 111, D13106, doi:10.1029/2005JD006873.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 20 20 16
PDF Downloads 10 10 8

Annual Cycle of Surface Longwave Radiation

View More View Less
  • 1 Science Systems and Applications, Inc., Hampton, Virginia
  • 2 National Institute of Aerospace, Hampton, Virginia
  • 3 Science Systems and Applications, Inc., Hampton, Virginia
  • 4 NASA Langley Research Center, Hampton, Virginia
© Get Permissions
Restricted access

Abstract

The annual cycles of upward and downward longwave fluxes at the earth’s surface are investigated by use of the NASA Global Energy and Water Cycle Experiment (GEWEX) Surface Radiation Budget Dataset. Principal component analysis is used to quantify the annual cycles. Because of the immense difference between the heat capacity of land and ocean, the surface of the earth is partitioned into these two categories. Over land, the first principal component describes over 95% of the variance of the annual cycle of the upward and downward longwave fluxes. Over ocean the first term describes more than 87% of these annual cycles. Empirical orthogonal functions show the corresponding geographical distributions of these cycles. Phase-plane diagrams of the annual cycles of upward longwave fluxes as a function of net shortwave flux show the thermal inertia of land and ocean.

Current affiliation: Science Systems and Applications, Inc., Hampton, Virginia.

Corresponding author address: G. Louis Smith, NASA Langley Research Center, Mail Stop 420, Hampton, VA 23681-2199. E-mail: george.l.smith@nasa.gov

Abstract

The annual cycles of upward and downward longwave fluxes at the earth’s surface are investigated by use of the NASA Global Energy and Water Cycle Experiment (GEWEX) Surface Radiation Budget Dataset. Principal component analysis is used to quantify the annual cycles. Because of the immense difference between the heat capacity of land and ocean, the surface of the earth is partitioned into these two categories. Over land, the first principal component describes over 95% of the variance of the annual cycle of the upward and downward longwave fluxes. Over ocean the first term describes more than 87% of these annual cycles. Empirical orthogonal functions show the corresponding geographical distributions of these cycles. Phase-plane diagrams of the annual cycles of upward longwave fluxes as a function of net shortwave flux show the thermal inertia of land and ocean.

Current affiliation: Science Systems and Applications, Inc., Hampton, Virginia.

Corresponding author address: G. Louis Smith, NASA Langley Research Center, Mail Stop 420, Hampton, VA 23681-2199. E-mail: george.l.smith@nasa.gov
Save