Abstract
A single-layered square prism urban canopy (SPUC) scheme for the Japan Meteorological Agency nonhydrostatic model (NHM) was developed. This scheme considers the urban canopy layer with square prism–shaped buildings. The basic concept of this scheme is similar to those of the conventional energy balance models for an urban canyon structure. The scheme presented here differs slightly from them in its representation of the bulk resistance circuit and some treatments of radiation processes, however, as well as by considering the water reservoir on building surfaces. A comparison between the SPUC scheme and the existing slab scheme of the NHM was made on summer days in the Tokyo metropolitan area. The SPUC run more accurately reproduced the expected behavior of the urban canopy effect than did the slab run. The effective albedo was smaller in the SPUC run than in the slab run (the upward shortwave radiation of the SPUC run was smaller than that of the slab run). The forecast heat fluxes in the SPUC run, however, showed worse performances. Adequate parameter settings (especially concerning latent heat fluxes) are needed in the SPUC run. The mean bias errors of the surface air temperature during nighttime were less negative and slightly improved in the SPUC run than in the slab run.