A Method for Forecasting Cloud Condensation Nuclei Using Predictions of Aerosol Physical and Chemical Properties from WRF/Chem

Daniel Ward Department of Earth and Atmospheric Science, Cornell University, Ithaca, New York

Search for other papers by Daniel Ward in
Current site
Google Scholar
PubMed
Close
and
William Cotton Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by William Cotton in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Model investigations of aerosol–cloud interactions across spatial scales are necessary to advance basic understanding of aerosol impacts on climate and the hydrological cycle. Yet these interactions are complex, involving numerous physical and chemical processes. Models capable of combining aerosol dynamics and chemistry with detailed cloud microphysics are recent developments. In this study, predictions of aerosol characteristics from the Weather Research and Forecasting Model with Chemistry (WRF/Chem) are integrated into the Regional Atmospheric Modeling System microphysics package to form the basis of a coupled model that is capable of predicting the evolution of atmospheric aerosols from gas-phase emissions to droplet activation. The new integrated system is evaluated against measurements of cloud condensation nuclei (CCN) from a land-based field campaign and an aircraft-based field campaign in Colorado. The model results show the ability to capture vertical variations in CCN number concentration within an anthropogenic pollution plume. In a remote continental location the model-forecast CCN number concentration exhibits a positive bias that is attributable in part to an overprediction of the aerosol hygroscopicity that results from an underprediction in the organic aerosol mass fraction. In general, the new system for predicting CCN from forecast aerosol fields improves on the existing scheme in which aerosol quantities were user prescribed.

Corresponding author address: Daniel Ward, Dept. of Earth and Atmospheric Science, Cornell University, Ithaca, NY 14850. E-mail: dsw25@cornell.edu

Abstract

Model investigations of aerosol–cloud interactions across spatial scales are necessary to advance basic understanding of aerosol impacts on climate and the hydrological cycle. Yet these interactions are complex, involving numerous physical and chemical processes. Models capable of combining aerosol dynamics and chemistry with detailed cloud microphysics are recent developments. In this study, predictions of aerosol characteristics from the Weather Research and Forecasting Model with Chemistry (WRF/Chem) are integrated into the Regional Atmospheric Modeling System microphysics package to form the basis of a coupled model that is capable of predicting the evolution of atmospheric aerosols from gas-phase emissions to droplet activation. The new integrated system is evaluated against measurements of cloud condensation nuclei (CCN) from a land-based field campaign and an aircraft-based field campaign in Colorado. The model results show the ability to capture vertical variations in CCN number concentration within an anthropogenic pollution plume. In a remote continental location the model-forecast CCN number concentration exhibits a positive bias that is attributable in part to an overprediction of the aerosol hygroscopicity that results from an underprediction in the organic aerosol mass fraction. In general, the new system for predicting CCN from forecast aerosol fields improves on the existing scheme in which aerosol quantities were user prescribed.

Corresponding author address: Daniel Ward, Dept. of Earth and Atmospheric Science, Cornell University, Ithaca, NY 14850. E-mail: dsw25@cornell.edu
Save
  • Abdul-Razzak, H., and S. J. Ghan, 2000: A parameterization of aerosol activation 2. Multiple aerosol types. J. Geophys. Res., 105, 68376844.

    • Search Google Scholar
    • Export Citation
  • Abdul-Razzak, H., and S. J. Ghan, 2002: A parameterization of aerosol activation 3. Sectional representation. J. Geophys. Res., 107, 4026, doi:10.1029/2001JD000483.

    • Search Google Scholar
    • Export Citation
  • Abdul-Razzak, H., S. J. Ghan, and C. Rivera-Carpio, 1998: A parameterization of aerosol activation 1. Single aerosol type. J. Geophys. Res., 103, 61236132.

    • Search Google Scholar
    • Export Citation
  • Ackermann, I. J., H. Hass, M. Memmesheimer, A. Ebel, F. S. Binkowski, and U. Shankar, 1998: Modal aerosol dynamics model for Europe: Development and first applications. Atmos. Environ., 32, 29812999.

    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., and D. Rosenfeld, 2008: Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth Sci. Rev., 89, doi:10.1016/j.earscirev.2008.03.001.

    • Search Google Scholar
    • Export Citation
  • Antilla, T., and V.-M. Kerminen, 2007: On the contribution of Aitken mode particles to cloud droplet populations at continental background areas—A parametric sensitivity study. Atmos. Chem. Phys., 7, 46254637.

    • Search Google Scholar
    • Export Citation
  • Binkowski, F. S., and U. Shankar, 1995: The Regional Particulate Matter Model: 1. Model description and preliminary results. J. Geophys. Res., 100, 26 19126 209.

    • Search Google Scholar
    • Export Citation
  • Borys, R. D., and M. Wetzel, 1997: Storm Peak Laboratory: A research, teaching, and service facility for the atmospheric sciences. Bull. Amer. Meteor. Soc., 78, 21152123.

    • Search Google Scholar
    • Export Citation
  • Chapman, E. G., W. I. Gustafson Jr., R. C. Easter, J. C. Barnard, S. J. Ghan, M. S. Pekour, and J. D. Fast, 2009: Coupling aerosol–cloud–radiative processes in the WRF-Chem model: Investigating the radiative impact of elevated point sources. Atmos. Chem. Phys., 9, 945964.

    • Search Google Scholar
    • Export Citation
  • Charlson, R. J., J. H. Seinfeld, A. Nenes, M. Kulmala, A. Laaksonen, and M. C. Facchini, 2001: Reshaping the theory of cloud formation. Science, 292, 20252026.

    • Search Google Scholar
    • Export Citation
  • Cheng, W. Y. Y., G. Carrio, W. R. Cotton, and S. M. Saleeby, 2009: Influence of cloud condensation and giant cloud condensation nuclei on the development of precipitating trade wind cumuli in a large eddy simulation. J. Geophys. Res., 114, D08201, doi:10.1029/2008JD011011.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., and Coauthors, 2003: RAMS 2001: Current status and future directions. Meteor. Atmos. Phys., 82, 529.

  • Cubison, M. J., and Coauthors, 2008: The influence of chemical composition and mixing state of Los Angeles urban aerosol on CCN number and cloud properties. Atmos. Chem. Phys., 8, 56495667.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., and M. W. Moncrieff, 1989: A three-dimensional numerical study of an Oklahoma squall line containing right-flank supercells. J. Atmos. Sci., 46, 33633392.

    • Search Google Scholar
    • Export Citation
  • Eidhammer, T., and Coauthors, 2010: Ice initiation by aerosol particles: Measured and predicted ice nuclei concentrations versus measured ice crystal concentrations in an orographic wave cloud. J. Atmos. Sci., 67, 24172436.

    • Search Google Scholar
    • Export Citation
  • Environmental Protection Agency, cited 2010: 2005 National Emissions Inventory data and documentation. [Available online at http://www.epa.gov/ttnchie1/net/2005inventory.html.]

    • Search Google Scholar
    • Export Citation
  • Fast, J. D., W. I. Gustafson Jr., R. C. Easter, R. A. Zaveri, J. C. Bernard, E. G. Chapman, G. A. Grell, and S. E. Peckham, 2006: Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology–chemistry–aerosol model. J. Geophys. Res., 111, D21305, doi:10.1029/2005JD006721.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., and S. M. Kreidenweis, 2002: Cloud processing of aerosols as modeled by a large eddy simulation with coupled microphysics and aqueous chemistry. J. Geophys. Res., 107, 4687, doi:10.1029/2002JD002054.

    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., and S. E. Schwartz, 2007: Aerosol properties and processes. Bull. Amer. Meteor. Soc., 88, 10591083.

  • Ghan, S. J., G. Guzman, and H. Abdul-Razzak, 1998: Competition between sea salt and sulfate particles as cloud condensation nuclei. J. Atmos. Sci., 55, 33403348.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., S. E. Peckham, R. Schmitz, S. A. McKeen, G. Frost, W. C. Skamarock, and B. Eder, 2005: Fully coupled “online” chemistry within the WRF model. Atmos. Environ., 39, 69576975.

    • Search Google Scholar
    • Export Citation
  • Guenther, A., T. Karl, P. Harley, C. Wiedinmyer, P. I. Palmer, and C. Geron, 2006: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys., 6, 31813210.

    • Search Google Scholar
    • Export Citation
  • Gustafson, W. I., E. G. Chapman, S. J. Ghan, R. C. Easter, and J. D. Fast, 2007: Impact on modeled cloud characteristics due to simplified treatment of uniform cloud condensation nuclei during NEAQS 2004. Geophys. Res. Lett., 34, L19809, doi:10.1029/2007GL030021.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., 1997: The effects of radiative and microphysical processes on simulated warm and transition season Arctic stratus. Ph.D. thesis, Colorado State University, 289 pp.

  • Heald, C. L., D. J. Jacob, R. J. Park, L. M. Russell, B. J. Huebert, J. H. Seinfeld, H. Liao, and R. J. Weber, 2005: A large organic aerosol source in the free troposphere missing from current models. Geophys. Res. Lett., 32, L18809, doi:10.1029/2005GL023831.

    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., and H. L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 23222339.

    • Search Google Scholar
    • Export Citation
  • Hsieh, W. C., A. Nenes, R. C. Flagan, J. H. Seinfeld, G. Buzorius, and H. Jonsson, 2009: Parameterization of cloud droplet size distributions: Comparison with parcel models and observations. J. Geophys. Res., 114, D11205, doi:10.1029/2008JD011387.

    • Search Google Scholar
    • Export Citation
  • Hudson, J. G., 1989: An instantaneous CCN spectrometer. J. Atmos. Oceanic Technol., 6, 10551065.

  • Hyslop, N. P., and W. H. White, 2008: An evaluation of Interagency Monitoring of Protected Visual Environments (IMPROVE) collocated precision and uncertainty estimates. Atmos. Environ., 42, 26912705.

    • Search Google Scholar
    • Export Citation
  • Kanakidou, M., and Coauthors, 2005: Organic aerosol and global climate modeling: A review. Atmos. Chem. Phys., 5, 10531123.

  • Koehler, K. A., S. M. Kreidenweis, P. J. DeMott, M. D. Petters, A. J. Prenni, and C. M. Carrico, 2009: Hygroscopicity and cloud droplet activation of mineral dust aerosol. Geophys. Res. Lett., 36, L08805, doi:10.1029/2009GL037348.

    • Search Google Scholar
    • Export Citation
  • Kulmala, M., A. Laaksonen, and L. Pirjola, 1998: Parameterizations for sulfuric acid/water nucleation rates. J. Geophys. Res., 103, 83018307.

    • Search Google Scholar
    • Export Citation
  • Levin, Z., and W. R. Cotton, 2009: Aerosol Pollution Impact on Precipitation. Springer, 386 pp.

  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., and K. Diehl, 2006: Sensitivity studies of the importance of dust ice nuclei for the indirect aerosol effect on stratiform mixed-phase clouds. J. Atmos. Sci., 63, 968983.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., J. Feichter, C. C. Chuang, and J. E. Penner, 1999: Prediction of the number of cloud droplets in the ECHAM GCM. J. Geophys. Res., 104, 91699199.

    • Search Google Scholar
    • Export Citation
  • McFiggans, G., and Coauthors, 2006: The effect of physical and chemical aerosol properties on warm cloud droplet activation. Atmos. Chem. Phys., 6, 25932649.

    • Search Google Scholar
    • Export Citation
  • McKeen, S., and Coauthors, 2007: Evaluation of several PM2.5 forecast models using data collected during the ICARTT/NEAQS 2004 field study. J. Geophys. Res., 112, D10S20, doi:10.1029/2006JD007608.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360.

  • Meyers, M. P., R. L. Walko, J. Y. Harrington, and W. R. Cotton, 1997: New RAMS cloud microphysics parameterization. Part II. The two-moment scheme. Atmos. Res., 45, 339.

    • Search Google Scholar
    • Export Citation
  • Ming, Y., V. Ramaswamy, L. J. Donner, and V. T. J. Phillips, 2006: A new parameterization of cloud droplet activation applicable to general circulation models. J. Atmos. Sci., 63, 13481356.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated‐k model for the longwave. J. Geophys. Res., 102, 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • Nenes, A., and J. H. Seinfeld, 2003: Parameterization of cloud droplet formation in global climate models. J. Geophys. Res., 108, 4415, doi:10.1029/2002JD00291.

    • Search Google Scholar
    • Export Citation
  • Pang, Y., B. J. Turpin, and L. A. Gundel, 2006: On the importance of organic oxygen for understanding organic aerosol particles. Aerosol Sci. Technol., 40, 128133.

    • Search Google Scholar
    • Export Citation
  • Petters, M. D., and S. M. Kreidenweis, 2007: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys., 7, 19611971.

    • Search Google Scholar
    • Export Citation
  • Petters, M. D., and Coauthors, 2009: Towards closing the gap between hygroscopic growth and activation for secondary organic aerosol—Part 2: Theoretical approaches. Atmos. Chem. Phys., 9, 39994009.

    • Search Google Scholar
    • Export Citation
  • Raymond, T. M., and S. N. Pandis, 2002: Cloud activation of single-component organic aerosol particles. J. Geophys. Res., 107, 4787, doi:10.1029/2002JD002159.

    • Search Google Scholar
    • Export Citation
  • Reutter, P., J. Trentmann, H. Su, M. Simmel, D. Rose, H. Wernli, M. O. Andreae, and U. Poschl, 2009: Aerosol- and updraft-limited regimes of cloud droplet formation: Influence of particle number, size and hygroscopicity on the activation of cloud condensation nuclei (CCN). Atmos. Chem. Phys., 9, 70677080.

    • Search Google Scholar
    • Export Citation
  • Roberts, G. C., and A. Nenes, 2005: A continuous-flow streamwise thermal-gradient CCN chamber for atmospheric measurements. Aerosol Sci. Technol., 39, 206221.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., and W. R. Cotton, 2004: A large-droplet mode and prognostic number concentration of cloud droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part I: Module descriptions and supercell test simulations. J. Appl. Meteor., 43, 182195.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., and W. R. Cotton, 2008: A binned approach to cloud-droplet riming implemented in a bulk microphysics model. J. Appl. Meteor. Climatol., 47, 694703.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., W. R. Cotton, D. Lowenthal, R. D. Borys, and M. A. Wetzel, 2009: Influence of cloud condensation nuclei on orographic snowfall. J. Appl. Meteor. Climatol., 48, 903922.

    • Search Google Scholar
    • Export Citation
  • Schell, B., I. J. Ackermann, H. Hass, F. S. Binkowski, and A. Ebel, 2001: Modeling the formation of secondary organic aerosol within a comprehensive air quality model system. J. Geophys. Res., 106, 28 27528 293.

    • Search Google Scholar
    • Export Citation
  • Segal, Y., and A. Khain, 2006: Dependence of droplet concentration on aerosol conditions in different cloud types: Application to droplet concentration parameterization of aerosol conditions. J. Geophys. Res., 111, D15204, doi:10.1029/2005JD006561.

    • Search Google Scholar
    • Export Citation
  • Segal, Y., M. Pinsky, and A. Khain, 2007: The role of competition effect in the raindrop formation. Atmos. Res., 83, 106118.

  • Seinfeld, J. H., and S. N. Pandis, 2006: Atmospheric Chemistry and Physics. John Wiley and Sons, 1203 pp.

  • Shantz, N. C., W. R. Leaitch, L. Phinney, M. Mozurkewich, and D. Toom-Sauntry, 2008: The effect of organic compounds on the growth rate of cloud droplets in marine and forest settings. Atmos. Chem. Phys., 8, 58695887.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. Part I: The basic experiment. Mon. Wea. Rev., 91, 99164.

    • Search Google Scholar
    • Export Citation
  • Stockwell, W. R., P. Middleton, and J. S. Chang, 1990: The second-generation Regional Acid Deposition Model chemical mechanism for regional air quality modeling. J. Geophys. Res., 95, 16 34316 367.

    • Search Google Scholar
    • Export Citation
  • Stockwell, W. R., F. Kirchner, M. Kuhn, and S. Seefeld, 1997: A new mechanism for regional atmospheric chemistry modeling. J. Geophys. Res., 102, 25 84725 879.

    • Search Google Scholar
    • Export Citation
  • Stokowski, D., 2005: The addition of the direct radiative effect of atmospheric aerosols into the Regional Atmospheric Modeling System (RAMS). M.S. thesis, Dept. of Atmospheric Science, Colorado State University, 81 pp.

  • Sullivan, R. C., M. J. K. Moore, M. Petters, S. M. Kreidenweis, G. C. Roberts, and K. A. Prather, 2009: Effect of chemical mixing state on the hygroscopicity and cloud nucleation properties of calcium mineral dust particles. Atmos. Chem. Phys., 9, 33033316.

    • Search Google Scholar
    • Export Citation
  • Svenningsson, B., and Coauthors, 2006: Hygroscopic growth and critical supersaturation for mixed aerosol particles of inorganic and organic compounds of atmospheric relevance. Atmos. Chem. Phys., 6, 19371952.

    • Search Google Scholar
    • Export Citation
  • van den Heever, S. C., and W. R. Cotton, 2007: Urban aerosol impacts on downwind convective storms. J. Appl. Meteor. Climatol., 46, 828850.

    • Search Google Scholar
    • Export Citation
  • van den Heever, S. C., G. G. Carrio, W. R. Cotton, P. J. DeMott, and A. J. Prenni, 2006: Impacts of nucleating aerosol on Florida storms. Part I: Mesoscale simulations. J. Atmos. Sci., 63, 17521775.

    • Search Google Scholar
    • Export Citation
  • VanReken, T. M., N. L. Ng, R. C. Flagan, and J. H. Seinfeld, 2005: Cloud condensation nucleus activation properties of biogenic secondary organic aerosol. J. Geophys. Res., 110, D07206, doi:10.1029/2004JD005465.

    • Search Google Scholar
    • Export Citation
  • Virkkula, A., R. Van Dingenen, F. Raes, and J. Hjorth, 1999: Hygroscopic properties of aerosol formed by oxidation of limonene, alpha-pinene and beta-pinene. J. Geophys. Res., 104, 35693579.

    • Search Google Scholar
    • Export Citation
  • Walko, R. L., and Coauthors, 2000: Coupled atmospheric–biophysics–hydrology models for environmental modeling. J. Appl. Meteor., 39, 931944.

    • Search Google Scholar
    • Export Citation
  • Ward, D. S., T. Eidhammer, W. R. Cotton, and S. M. Kreidenweis, 2010: The role of the particle size distribution in assessing aerosol composition effects on simulated droplet activation. Atmos. Chem. Phys., 10, 54355447.

    • Search Google Scholar
    • Export Citation
  • Weingartner, E., H. Burtsher, and U. Baltensperger, 1997: Hygroscopic properties of carbon and diesel soot particles. Atmos. Environ., 31, 23112327.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., 2008: Online coupled meteorology and chemistry models: History, current status, and outlook. Atmos. Chem. Phys., 8, 28952932.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1084 836 295
PDF Downloads 282 95 9