A Robust Dual-Frequency Radar Profiling Algorithm

Mircea Grecu Goddard Earth Sciences and Technology Center, University of Maryland Baltimore County, Baltimore, and Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Mircea Grecu in
Current site
Google Scholar
PubMed
Close
,
Lin Tian Goddard Earth Sciences and Technology Center, University of Maryland Baltimore County, Baltimore, and Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Lin Tian in
Current site
Google Scholar
PubMed
Close
,
William S. Olson Joint Center for Earth Systems Technology, University of Maryland Baltimore County, Baltimore, and Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by William S. Olson in
Current site
Google Scholar
PubMed
Close
, and
Simone Tanelli Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Simone Tanelli in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, an algorithm to retrieve precipitation from spaceborne dual-frequency (13.8 and 35.6 GHz, or Ku/Ka band) radar observations is formulated and investigated. Such algorithms will be of paramount importance in deriving radar-based and combined radar–radiometer precipitation estimates from observations provided by the forthcoming NASA Global Precipitation Measurement (GPM) mission. In GPM, dual-frequency Ku-/Ka-band radar observations will be available only within a narrow swath (approximately one-half of the width of the Ku-band radar swath) over the earth’s surface. Therefore, a particular challenge is to develop a flexible radar retrieval algorithm that can be used to derive physically consistent precipitation profile estimates across the radar swath irrespective of the availability of Ka-band radar observations at any specific location inside that swath, in other words, an algorithm capable of exploiting the information provided by dual-frequency measurements but robust in the absence of Ka-band channel. In the present study, a unified, robust precipitation retrieval algorithm able to interpret either Ku-only or dual-frequency Ku-/Ka-band radar observations in a manner consistent with the information content of the observations is formulated. The formulation is based on 1) a generalized Hitschfeld–Bordan attenuation correction method that yields generic Ku-only precipitation profile estimates and 2) an optimization procedure that adjusts the Ku-band estimates to be physically consistent with coincident Ka-band reflectivity observations and surface reference technique–based path-integrated attenuation estimates at both Ku and Ka bands. The algorithm is investigated using synthetic and actual airborne radar observations collected in the NASA Tropical Composition, Cloud, and Climate Coupling (TC4) campaign. In the synthetic data investigation, the dual-frequency algorithm performed significantly better than a single-frequency algorithm; dual-frequency estimates, however, are still sensitive to various assumptions such as the particle size distribution shape, vertical and cloud water distributions, and scattering properties of the ice-phase precipitation.

Corresponding author address: Dr. Mircea Grecu, Code 613.1, NASA/GSFC, 8800 Greenbelt Rd., Greenbelt, MD 20771. E-mail: mircea.grecu-1@nasa.gov

Abstract

In this study, an algorithm to retrieve precipitation from spaceborne dual-frequency (13.8 and 35.6 GHz, or Ku/Ka band) radar observations is formulated and investigated. Such algorithms will be of paramount importance in deriving radar-based and combined radar–radiometer precipitation estimates from observations provided by the forthcoming NASA Global Precipitation Measurement (GPM) mission. In GPM, dual-frequency Ku-/Ka-band radar observations will be available only within a narrow swath (approximately one-half of the width of the Ku-band radar swath) over the earth’s surface. Therefore, a particular challenge is to develop a flexible radar retrieval algorithm that can be used to derive physically consistent precipitation profile estimates across the radar swath irrespective of the availability of Ka-band radar observations at any specific location inside that swath, in other words, an algorithm capable of exploiting the information provided by dual-frequency measurements but robust in the absence of Ka-band channel. In the present study, a unified, robust precipitation retrieval algorithm able to interpret either Ku-only or dual-frequency Ku-/Ka-band radar observations in a manner consistent with the information content of the observations is formulated. The formulation is based on 1) a generalized Hitschfeld–Bordan attenuation correction method that yields generic Ku-only precipitation profile estimates and 2) an optimization procedure that adjusts the Ku-band estimates to be physically consistent with coincident Ka-band reflectivity observations and surface reference technique–based path-integrated attenuation estimates at both Ku and Ka bands. The algorithm is investigated using synthetic and actual airborne radar observations collected in the NASA Tropical Composition, Cloud, and Climate Coupling (TC4) campaign. In the synthetic data investigation, the dual-frequency algorithm performed significantly better than a single-frequency algorithm; dual-frequency estimates, however, are still sensitive to various assumptions such as the particle size distribution shape, vertical and cloud water distributions, and scattering properties of the ice-phase precipitation.

Corresponding author address: Dr. Mircea Grecu, Code 613.1, NASA/GSFC, 8800 Greenbelt Rd., Greenbelt, MD 20771. E-mail: mircea.grecu-1@nasa.gov
Save
  • Bauer, P., A. Khain, A. Pokrovsky, R. Meneghini, C. Kummerow, F. Marzano, and J. P. V. Poiares Baptista, 2000: Combined cloud–microwave radiative transfer modeling of stratiform rainfall. J. Atmos. Sci., 57, 10821104.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., V. Chandrasekar, J. Hubbert, E. Gorgucci, W. L. Randeu, and M. Schoenhuber, 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60, 354365.

    • Search Google Scholar
    • Export Citation
  • Durden, S. L., and Z. S. Haddad, 1998: Comparison of radar rainfall retrieval algorithms in convective rain during TOGA COARE. J. Atmos. Oceanic Technol., 15, 10911096.

    • Search Google Scholar
    • Export Citation
  • Ferreira, F., P. Amayenc, S. Oury, and J. Testud, 2001: Study and tests of improved rain estimates from the TRMM precipitation radar. J. Appl. Meteor., 40, 18781899.

    • Search Google Scholar
    • Export Citation
  • Grecu, M., and E. N. Anagnostou, 2004: A differential attenuation based algorithm for estimating precipitation from dual-wavelength spaceborne radar observations. Can. J. Remote Sens., 30, 697705.

    • Search Google Scholar
    • Export Citation
  • Grecu, M., and W. S. Olson, 2008: Precipitating snow retrievals from combined airborne cloud radar and millimeter wave radiometer observations. J. Appl. Meteor. Climatol., 47, 16341650.

    • Search Google Scholar
    • Export Citation
  • Grecu, M., W. S. Olson, and E. N. Anagnostou, 2004: Retrieval of precipitation profiles from multiresolution, multifrequency, active and passive microwave observations. J. Appl. Meteor., 43, 562575.

    • Search Google Scholar
    • Export Citation
  • Haddad, Z. S., E. A. Smith, C. D. Kummerow, T. Iguchi, M. R. Farrar, S. L. Durden, M. Alves, and W. S. Olson, 1997: The TRMM “day-1” radar/radiometer combined rain-profiling algorithm. J. Meteor. Soc. Japan, 75, 799809.

    • Search Google Scholar
    • Export Citation
  • Hitschfeld, W., and J. Bordan, 1954: Errors inherent in the radar measurement of rainfall at attenuating wavelengths. J. Meteor., 11, 5867.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., 2007: A variational scheme for retrieving rainfall rate and hail reflectivity fraction from polarization radar. J. Appl. Meteor. Climatol., 46, 15441564.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., G. Skofronick-Jackson, C. D. Kummerow, and J. M. Shepherd 2008: Global precipitation measurement. Precipitation: Advances in Measurement, Estimation and Prediction, S. C. Michaelides, Ed., Springer, 131–170.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., and R. Meneghini, 1994: Intercomparison of single-frequency methods for retrieving a vertical rain profile from airborne or spaceborne radar. J. Atmos. Oceanic Technol., 11, 15071516.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., T. Kozu, J. Kwiatkowski, R. Meneghini, J. Awaka, and K. Okamoto, 2009: Uncertainties in the rain profiling algorithm for the TRMM precipitation radar. J. Meteor. Soc. Japan, 87, 130.

    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., and T. M. Blackman, 2002: The need to represent raindrop size spectra as normalized gamma distributions for the interpretation of polarization radar observations. J. Appl. Meteor., 41, 286297.

    • Search Google Scholar
    • Export Citation
  • Klaassen, W., 1988: Radar observations and simulation of the melting layer of precipitation. J. Atmos. Sci., 45, 37413753.

  • Liao, L., and R. Meneghini, 2005: On modeling air/spaceborne radar returns in the melting layer. IEEE Trans. Geosci. Remote Sens., 43, 27992809.

    • Search Google Scholar
    • Export Citation
  • Liao, L., R. Meneghini, T. Iguchi, and A. Detwiler, 2005: Use of dual-wavelength radar for snow parameter estimates. J. Atmos. Oceanic Technol., 22, 14941506.

    • Search Google Scholar
    • Export Citation
  • Liu, G., 2008: A database of microwave single-scattering properties for nonspherical ice particles. Bull. Amer. Meteor. Soc., 89, 15631570.

    • Search Google Scholar
    • Export Citation
  • Lo, K. K., and R. E. Passarelli, 1982: The growth of snow in winter storms: An airborne observational study. J. Atmos. Sci., 39, 697706.

    • Search Google Scholar
    • Export Citation
  • Mardiana, R., T. Iguchi, and N. Takahashi, 2004: A dual-frequency rain profiling method without the use of a surface reference technique. IEEE Trans. Geosci. Remote Sens., 42, 22142225.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., and C. D. Kummerow, 2005: Combined radar and radiometer analysis of precipitation profiles for a parametric retrieval algorithm. J. Atmos. Oceanic Technol., 22, 909929.

    • Search Google Scholar
    • Export Citation
  • Maxwell-Garnett, J. C., 1904: Colors in metal glasses and in metallic films. Philos. Trans. Roy. Soc. London, 203A, 385420.

  • Meneghini, R., 1978: Rain-rate estimates for an attenuating radar. Radio Sci., 13, 459470.

  • Meneghini, R., T. Kozu, H. Kumagai, and W. Boncyk, 1992: A study of rain estimation methods from space using dual-wavelength radar measurements at near-nadir incidence over ocean. J. Atmos. Oceanic Technol., 9, 364382.

    • Search Google Scholar
    • Export Citation
  • Meneghini, R., T. Iguchi, T. Kozu, L. Liao, K. Okamoto, J. A. Jones, and J. Kwiatkowski, 2000: Use of the surface reference technique for path attenuation estimates from the TRMM precipitation radar. J. Appl. Meteor., 39, 20532070.

    • Search Google Scholar
    • Export Citation
  • Meneghini, R., J. A. Jones, T. Iguchi, K. Okamoto, and J. Kwiatkowski, 2004: A hybrid surface reference technique and its application to the TRMM precipitation radar. J. Atmos. Oceanic Technol., 21, 16451658.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677.

    • Search Google Scholar
    • Export Citation
  • Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, 2007: Numerical Recipes in FORTRAN: The Art of Scientific Computing. 3rd ed. Cambridge University Press, 1256 pp.

    • Search Google Scholar
    • Export Citation
  • Rao, T. N., D. N. Rao, K. Mohan, and S. Raghavan, 2001: Classification of tropical precipitating systems and associated Z-R relationships. J. Geophys. Res., 106 (D16), 17 69917 711.

    • Search Google Scholar
    • Export Citation
  • Rodgers, C. D., 2000: Inverse Methods for Atmospheric Sounding: Theory and Practice. World Scientific, 238 pp.

  • Rose, C. R., and V. Chandrasekar, 2006: A GPM dual-frequency retrieval algorithm: DSD profile-optimization method. J. Atmos. Oceanic Technol., 23, 13721383.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and C. W. Ulbrich, 2003: Cloud microphysical properties, processes, and rainfall estimation opportunities. Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas, Meteor. Monogr., No. 52, Amer. Meteor. Soc., 237–258.

    • Search Google Scholar
    • Export Citation
  • Sadowy, G. A., A. C. Berkun, W. Chun, E. Im, and S. L. Durden, 2003: Development of an advanced airborne precipitation radar. Microwave J., 46, 8498.

    • Search Google Scholar
    • Export Citation
  • Senbokuya, Y., S. Satoh, K. Furukawa, M. Kojima, H. Hanado, N. Takahashi, T. Iguchi, and K. Nakamura, 2004: Development of the spaceborne dual-frequency precipitation radar for the Global Precipitation Measurement mission. Proc. IGARSS 2004, Anchorage, AK, IEEE, 3566–3569.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., J. A. Smith, and R. Uijlenhoet, 2004: A microphysical interpretation of radar reflectivity–rain rate relationships. J. Atmos. Sci., 61, 11141131.

    • Search Google Scholar
    • Export Citation
  • Testud, J., S. Oury, P. Amayenc, and R. A. Black, 2001: The concept of “normalized” distributions to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor., 40, 11181140.

    • Search Google Scholar
    • Export Citation
  • Tian, L., G. M. Heymsfield, L. Li, A. J. Heymsfield, A. Bansemer, C. H. Twohy, and R. C. Srivastava, 2010: A study of cirrus ice particle size distribution using TC4 observations. J. Atmos. Sci., 67, 195216.

    • Search Google Scholar
    • Export Citation
  • Toon, O. B., and Coauthors, 2010: Planning, implementation, and first results of the Tropical Composition, Cloud and Climate Coupling Experiment (TC4). J. Geophys. Res., 115, D00J04, doi:10.1029/2009JD013073.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22, 17641775.

    • Search Google Scholar
    • Export Citation
  • Westbrook, C. D., R. C. Ball, P. R. Field, and A. J. Heymsfield, 2004: Universality in snowflake aggregation. Geophys. Res. Lett., 31, L15104, doi:10.1029/2004GL020363.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2006: Discrete Inverse and State Estimation Problems: With Geophysical Fluid Applications. Cambridge University Press, 384 pp.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 586 163 43
PDF Downloads 309 69 10