Estimating Contemporary and Future Wind-Damage Losses from Hurricanes Affecting Eglin Air Force Base, Florida

James B. Elsner Department of Geography, The Florida State University, Tallahassee, Florida

Search for other papers by James B. Elsner in
Current site
Google Scholar
PubMed
Close
,
Shawn W. Lewers Department of Geography, The Florida State University, Tallahassee, Florida

Search for other papers by Shawn W. Lewers in
Current site
Google Scholar
PubMed
Close
,
Jill C. Malmstadt Department of Geography, The Florida State University, Tallahassee, Florida

Search for other papers by Jill C. Malmstadt in
Current site
Google Scholar
PubMed
Close
, and
Thomas H. Jagger Department of Geography, The Florida State University, Tallahassee, Florida

Search for other papers by Thomas H. Jagger in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The strongest hurricanes over the North Atlantic Ocean are getting stronger, with the increase related to rising ocean temperature. Here, the authors develop a procedure for estimating future wind losses from hurricanes and apply it to Eglin Air Force Base along the northern coast of Florida. The method combines models of the statistical distributions for extreme wind speed and average sea surface temperature over the Gulf of Mexico with dynamical models for tropical cyclone wind fields and damage losses. Results show that the 1-in-100-yr hurricane from the twentieth century picked at random to occur in the year 2100 would result in wind damage that is 36% [(13%, 76%) = 90% confidence interval] greater solely as a consequence of the projected warmer waters in the Gulf of Mexico. The method can be applied elsewhere along the coast with modeling assumptions modified for regional conditions.

Corresponding author address: James B. Elsner, Dept. of Geography, The Florida State University, Tallahassee, FL 32301. E-mail: jelsner@fsu.edu

Abstract

The strongest hurricanes over the North Atlantic Ocean are getting stronger, with the increase related to rising ocean temperature. Here, the authors develop a procedure for estimating future wind losses from hurricanes and apply it to Eglin Air Force Base along the northern coast of Florida. The method combines models of the statistical distributions for extreme wind speed and average sea surface temperature over the Gulf of Mexico with dynamical models for tropical cyclone wind fields and damage losses. Results show that the 1-in-100-yr hurricane from the twentieth century picked at random to occur in the year 2100 would result in wind damage that is 36% [(13%, 76%) = 90% confidence interval] greater solely as a consequence of the projected warmer waters in the Gulf of Mexico. The method can be applied elsewhere along the coast with modeling assumptions modified for regional conditions.

Corresponding author address: James B. Elsner, Dept. of Geography, The Florida State University, Tallahassee, FL 32301. E-mail: jelsner@fsu.edu
Save
  • Barnett, M. R., 2006: Hurricane Dennis & Hurricane Katrina: Final report on 2005 hurricane season impacts to northwest Florida. Florida Dept. of Environmental Protection Division of Water Resource Management Bureau of Beaches and Coastal Systems Rep., 122 pp. [Available online at http://bcs.dep.state.fl.us/reports/2005/2005hurr.pdf.]

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., T. R. Knutson, R. E. Tuleya, J. J. Sirutis, G. A. Vecchi, S. T. Garner, and I. M. Held, 2010: Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science, 327, 454458.

    • Search Google Scholar
    • Export Citation
  • Brown, D. P., J. L. Franklin, and C. Landsea, 2006: A fresh look at tropical cyclone pressure-wind relationships using recent reconnaissance based “best-track” data (1998–2005). Preprints, 27th Conf. on Hurricanes and Tropical Meteorology, Orlando, FL, Amer. Meteor. Soc., 3B.5. [Available online at http://ams.confex.com/ams/pdfpapers/107190.pdf.]

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. S. Phillips, and M. A. Alexander, 2010: Twentieth century tropical sea surface temperature trends revisited. Geophys. Res. Lett., 37, L10701, doi:10.1029/2010GL043321.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., and T. H. Jagger, 2004: A hierarchical Bayesian approach to seasonal hurricane modeling. J. Climate, 17, 28132827.

  • Elsner, J. B., and T. H. Jagger, 2010: On the increasing intensity of the strongest Atlantic hurricanes. Hurricanes and Climate Change, Vol. 2, J. B. Elsner et al., Eds., Springer, 175–190.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., T. H. Jagger, and K.-b. Liu, 2008a: Comparison of hurricane return levels using historical and geological records. J. Appl. Meteor. Climatol., 47, 368374.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., J. P. Kossin, and T. H. Jagger, 2008b: The increasing intensity of the strongest tropical cyclones. Nature, 455, 9295.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1980: An analytical model of the wind and pressure profiles in hurricanes. Mon. Wea. Rev., 108, 12121218.

  • Jagger, T. H., and J. B. Elsner, 2006: Climatology models for extreme hurricane winds near the United States. J. Climate, 19, 32203236.

    • Search Google Scholar
    • Export Citation
  • Jagger, T. H., and J. B. Elsner, 2009: Modeling tropical cyclone intensity with quantile regression. Int. J. Climatol., 29, 13511361.

    • Search Google Scholar
    • Export Citation
  • Keim, B. D., R. A. Muller, and G. W. Stone, 2007: Spatiotemporal patterns and return periods of tropical storm and hurricane strikes from Texas to Maine. J. Climate, 20, 34983509.

    • Search Google Scholar
    • Export Citation
  • Khain, A., B. Lynn, and J. Dudhia, 2010: Aerosol effects on intensity of landfalling hurricanes as seen from simulations with the WRF model with spectral bin microphysics. J. Atmos. Sci., 67, 365384.

    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., 2008: Refinements to Atlantic basin seasonal hurricane prediction from 1 December. J. Geophys. Res., 113, D17109, doi:10.1029/2008JD010047.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and R. E. Tuleya, 2004: Impact of CO2-induced warming on simulated hurricane intensity and precipitation: Sensitivity to the choice of climate model and convective parameterization. J. Climate, 17, 34773495.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., J. J. Sirutis, S. T. Garner, G. A. Vecchi, and I. M. Held, 2008: Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions. Nat. Geosci., 1, 359364.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and Coauthors, 2010: Tropical cyclones and climate change. Nat. Geosci., 3, 157163.

  • Koenker, R., and G. Bassett, 1978: Regression quantiles. Econometrica, 46, 3350.

  • Kossin, J. P., and S. J. Camargo, 2009: Hurricane track variability and secular potential intensity trends. Climatic Change, 97, 329337.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and Coauthors, 2004: The Atlantic Hurricane Database Reanalysis Project: Documentation for the 1851–1910 alterations and additions to the HURDAT database. Hurricanes and Typhoons: Past, Present, and Future, R. Murnane and K. b. Liu, Eds., Columbia University Press, 177–221.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., G. A. Vecchi, and L. Bengtsson, and T. R. Knutson, 2010: Impact of duration thresholds on Atlantic tropical cyclone counts. J. Climate, 23, 25082519.

    • Search Google Scholar
    • Export Citation
  • Malmstadt, J. C., K. N. Scheitlin, and J. B. Elsner, 2009: Florida hurricanes and damage costs. Southeast. Geogr., 49, 108131.

  • Malmstadt, J. C., J. B. Elsner, and T. H. Jagger, 2010: Risk of strong hurricane winds to Florida cities. J. Appl. Meteor. Climatol., 49, 21212132.

    • Search Google Scholar
    • Export Citation
  • Mousavi, M. E., J. L. Irish, A. E. Frey, F. Olivera, and B. L. Edge, 2010: Global warming and hurricanes: The potential impact of hurricane intensification and sea level rise on coastal flooding. Climatic Change, 104, 575597.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., J. Gratz, C. W. Landsea, D. Collins, M. A. Saunders, and R. Musulin, 2008: Normalized hurricane damage in the United States: 1900–2005. Nat. Hazards Rev., 9, 2942.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., S. H. Houston, L. R. Amat, and N. Morisseau-Leroy, 1998: The HRD real-time hurricane wind analysis system. J. Wind Eng. Ind. Aerodyn., 77-78, 5364.

    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., J. L. Franklin, A. B. Schumacher, M. DeMaria, L. K. Shay, and E. J. Gibney, 2010: Tropical cyclone intensity change before U.S. Gulf Coast landfall. Wea. Forecasting, 25, 13801396.

    • Search Google Scholar
    • Export Citation
  • Scheitlin, K. N., J. B. Elsner, S. W. Lewers, J. C. Malmstadt, and T. H. Jagger, 2011: Risk assessment of hurricane winds for Eglin Air Force Base in northwestern Florida, USA. Theor. Appl. Climatol., doi:10.1007/s00704-010-0386-4, in press.

    • Search Google Scholar
    • Export Citation
  • Schneider, P., and E. Berman, 2010: Multi-hazard loss estimation methodology hurricane model—HAZUS-MH MR5 technical manual. Department of Homeland Security Federal Emergency Management Agency Mitigation Division Tech. Manual, 1014 pp. [Available online at http://www.fema.gov/library/file;jsessionid=315BA9DB4EF96B08ED5DB86B3BCDD820.WorkerLibrary?.]

    • Search Google Scholar
    • Export Citation
  • Solow, A. R., 2010: On the maximum observed wind speed in a randomly sampled hurricane. J. Climate, 23, 12621265.

  • Vecchi, G. A., and T. R. Knutson, 2008: On estimates of historical North Atlantic tropical cyclone activity. J. Climate, 21, 35803600.

    • Search Google Scholar
    • Export Citation
  • Vickery, P. J., and D. Wadhera, 2008: Statistical models of Holland pressure profile parameter and radius to maximum winds of hurricanes from flight-level pressure and H*Wind data. J. Appl. Meteor. Climatol., 47, 24972517.

    • Search Google Scholar
    • Export Citation
  • Vickery, P. J., J. Lin, P. F. Skerlj, L. A. Twisdale, and K. Huang, 2006: HAZUS-MH hurricane model methodology. I: Hurricane hazard, terrain, and wind load modeling. Nat. Hazards Rev., 7, 8293.

    • Search Google Scholar
    • Export Citation
  • Vickery, P. J., F. J. Masters, M. D. Powell, and D. Wadhera, 2009a: Hurricane hazard modeling: The past, present, and future. J. Wind Eng. Ind. Aerodyn., 97, 392405.

    • Search Google Scholar
    • Export Citation
  • Vickery, P. J., D. Wadhera, M. D. Powell, and Y. Chen, 2009b: A hurricane boundary layer and wind field model for use in engineering applications. J. Appl. Meteor. Climatol., 48, 381405.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 155 47 3
PDF Downloads 111 25 0