• Baum, B. A., , A. J. Heymsfield, , P. Yang, , and S. T. Bedka, 2005: Bulk scattering models for the remote sensing of ice clouds. Part I: Microphysical data and models. J. Appl. Meteor., 44, 18851895.

    • Search Google Scholar
    • Export Citation
  • Berk, A., , L. S. Bernstein, , G. P. Anderson, , P. K. Acharya, , D. C. Robertson, , J. H. Chetwynd, , and S. M. Adler-Golden, 1998: MODTRAN cloud and multiple scattering upgrades with application to AVIRIS. Remote Sens. Environ., 65, 367375.

    • Search Google Scholar
    • Export Citation
  • Bohren, C. F., , and D. R. Huffmann, 1983: Absorption and Scattering of Light by Small Particles. Wiley-Interscience, 541 pp.

  • Dietmüller, S., , M. Ponater, , R. Sausen, , K. P. Hoinka, , and S. Pechtl, 2008: Contrails, natural clouds, and diurnal temperature range. J. Climate, 21, 50615075.

    • Search Google Scholar
    • Export Citation
  • Draine, B. T., , and P. J. Flatau, 1994: Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Amer. A, 11, 14911499.

    • Search Google Scholar
    • Export Citation
  • Draine, B. T., , and P. J. Flatau, 2003: User guide to the discrete dipole approximation Code DDSCAT.6.0. [Available online at http://arxiv.org/abs/astro-ph/0309069.]

    • Search Google Scholar
    • Export Citation
  • Evans, K., , and G. L. Stephens, 1995: Microwave radiative transfer trough clouds composed of realistically shaped ice crystals. Part I: Single scattering properties. J. Atmos. Sci., 52, 20412057.

    • Search Google Scholar
    • Export Citation
  • Fortuin, J. P. F., , R. van Dorland, , W. M. F. Wauben, , and H. Kelder, 1995: Greenhouse effects of aircraft emissions as calculated by a radiative transfer model. Ann. Geophys., 13, 413418.

    • Search Google Scholar
    • Export Citation
  • Fouquart, Y., , B. Bonnel, , and V. Ramaswamy, 1991: Intercomparing shortwave radiation codes for climate studies. J. Geophys. Res., 96, 89558968.

    • Search Google Scholar
    • Export Citation
  • Frömming, C., , M. Ponater, , U. Burkhardt, , A. Stenke, , S. Pechtl, , and R. Sausen, 2011: Sensitivity of contrail coverage and contrail radiative forcing to selected key parameters. Atmos. Environ., 45, 14831490.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., , and K.-N. Liou, 1993: Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50, 20082025.

  • Goodman, J., , R. F. Pueschel, , E. J. Jensen, , S. Verma, , G. V. Ferry, , S. D. Howard, , S. A. Kinne, , and D. Baumgardner, 1998: Shape and size of contrails ice particles. Geophys. Res. Lett., 25, 13271330.

    • Search Google Scholar
    • Export Citation
  • Halthore, R. N., and Coauthors, 2005: Intercomparison of shortwave radiative transfer codes and measurements. J. Geophys. Res., 110, D11206, doi:10.1029/2004JD005293.

    • Search Google Scholar
    • Export Citation
  • Haywood, J. M., and Coauthors, 2009: A case study of the radiative forcing of persistent contrails evolving into contrail-induced cirrus. J. Geophys. Res., 114, D24201, doi:10.1029/2009JD012650.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , and C. M. R. Platt, 1984: A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content. J. Atmos. Sci., 41, 846855.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , D. Baumgardner, , P. DeMott, , P. Forster, , K. Gierens, , and B. Kärcher, 2010: Contrail microphysics. Bull. Amer. Meteor. Soc., 91, 465472.

    • Search Google Scholar
    • Export Citation
  • Hong, G., 2007: Parameterization of scattering and absorption properties of nonspherical ice crystals at microwave frequencies. J. Geophys. Res., 112, D11208, doi:10.1029/2006JD008364.

    • Search Google Scholar
    • Export Citation
  • Hong, G., , Q. Feng, , P. Yang, , G. Kattawar, , P. Minnis, , and Y. Hu, 2008: Optical properties of ice particles in young contrails. J. Quant. Spectrosc. Radiat. Transfer, 109, 26352657.

    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., , S. Kinne, , and O. B. Toon, 1994: Tropical cirrus cloud radiative forcing: Sensitivity studies. Geophys. Res. Lett., 21, 20232026.

    • Search Google Scholar
    • Export Citation
  • Kahnert, M., , A. D. Sandvik, , M. Biryulina, , J. J. Stamnes, , and K. Stamnes, 2008: Impact of ice particle shape on short-wave radiative forcing: A case study for an arctic ice cloud. J. Quant. Spectrosc. Radiat. Transfer, 109, 11961218.

    • Search Google Scholar
    • Export Citation
  • Kärcher, B., , O. Möhler, , P. J. DeMott, , S. Pechtl, , and F. Yu, 2007: Atmospheric chemistry and physics insights into the role of soot aerosols in cirrus cloud formation. Atmos. Chem. Phys., 7, 42034227.

    • Search Google Scholar
    • Export Citation
  • Kärcher, B., , U. Burkhardt, , S. Unterstrasser, , and P. Minnis, 2009: Factors controlling contrail cirrus optical depth. Atmos. Chem. Phys., 9, 62296254.

    • Search Google Scholar
    • Export Citation
  • Kärcher, B., , U. Burkhardt, , M. Ponater, , and C. Frömming, 2010: Importance of representing optical depth variability for estimates of global line-shaped contrail radiative forcing. Proc. Natl. Acad. Sci. USA, 107, 19 18119 184, doi:10.1073/pnas.1005555107.

    • Search Google Scholar
    • Export Citation
  • Kim, M.-J., 2006: Single scattering parameters of randomly oriented snow particles at microwave frequencies. J. Geophys. Res., 111, D14201, doi:10.1029/2005JD006892.

    • Search Google Scholar
    • Export Citation
  • Liou, K. N., 1992: Radiation and Cloud Processes in the Atmosphere. Oxford University Press, 487 pp.

  • Liu, G., 2008: A database of microwave single-scattering properties for nonspherical ice particles. Bull. Amer. Meteor. Soc., 89, 15631570.

    • Search Google Scholar
    • Export Citation
  • Macke, A., , and M. I. Mishchenko, 1996: Applicability of regular particle shapes in light scattering calculations for atmospheric ice particles. Appl. Opt., 35, 42914296.

    • Search Google Scholar
    • Export Citation
  • Macke, A., , J. Muller, , and E. Rasche, 1996: Single scattering properties of atmospheric crystals. J. Atmos. Sci., 53, 28132825.

  • Marquart, S., , M. Ponater, , F. Mager, , and R. Sausen, 2003: Future development of contrail cover, optical depth, and radiative forcing: Impacts of increasing air traffic and climate change. J. Climate, 16, 28902904.

    • Search Google Scholar
    • Export Citation
  • Meerkötter, R., , U. Schumann, , D. R. Doelling, , P. Minnis, , T. Nakajima, , and Y. Tsushima, 1999: Radiative forcing by contrails. Ann. Geophys., 17, 10701084.

    • Search Google Scholar
    • Export Citation
  • Meyer, R., , H. Mannstein, , R. Meerkötter, , U. Schumann, , and P. Wendling, 2002: Regional radiative forcing by line-shaped contrails derived from satellite data. J. Geophys. Res., 107, 4104, doi:10.1029/2001JD000426.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., , U. Schumann, , D. R. Doelling, , K. M. Gierens, , and D. W. Fahey, 1999: Global distribution of contrail radiative forcing. Geophys. Res. Lett., 26, 18531856.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., , and L. D. Travis, 1994: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun., 109, 1621.

    • Search Google Scholar
    • Export Citation
  • Myhre, G., , and F. Stordal, 2001: On the tradeoff of the solar and thermal infrared radiative impact of contrails. Geophys. Res. Lett., 28, 31193122.

    • Search Google Scholar
    • Export Citation
  • Myhre, G., and Coauthors, 2009: Intercomparison of radiative forcing calculations of stratospheric water vapour and contrails. Meteor. Z., 18, 585596.

    • Search Google Scholar
    • Export Citation
  • Palikonda, R., , P. Minnis, , D. P. Duda, , and H. Mannstein, 2005: Contrail coverage derived from 2001 AVHRR data over the continental United States of America and surrounding areas. Meteor. Z., 14, 525536.

    • Search Google Scholar
    • Export Citation
  • Penner, J. E., , D. H. Lister, , D. J. Griggs, , D. J. Dokken, , and M. McFarland, Eds., 1999: Aviation and the Global Atmosphere. Cambridge University Press, 365 pp.

    • Search Google Scholar
    • Export Citation
  • Ponater, M., , S. Marquart, , and R. Sausen, 2002: Contrails in a comprehensive global climate model: Parametrization and radiative forcing results. J. Geophys. Res., 107, 4164, doi:10.1029/2001JD000429.

    • Search Google Scholar
    • Export Citation
  • Rädel, G., , and K. P. Shine, 2008: Radiative forcing by persistent contrails and its dependence on cruise altitudes. J. Geophys. Res., 113, D07105, doi:10.1029/2007JD009117.

    • Search Google Scholar
    • Export Citation
  • Rap, A., , P. M. Forster, , A. Jones, , O. Boucher, , J. M. Haywood, , N. Bellouin, , and R. R. De Leon, 2010: Parameterization of contrails in the UK Met Office Climate Model. J. Geophys. Res., 115, D10205, doi:10.1029/2009JD012443.

    • Search Google Scholar
    • Export Citation
  • Rockwitz, K., 1989: Scattering properties of horizontally oriented ice crystal columns in cirrus clouds. Part 1. Appl. Opt., 28, 41034110.

    • Search Google Scholar
    • Export Citation
  • Sausen, R., and Coauthors, 2005: Aviation radiative forcing in 2000: An update on IPCC (1999). Meteor. Z., 14, 555561.

  • Schröder, F., and Coauthors, 2000: On the transition of contrails into cirrus clouds. J. Atmos. Sci., 57, 464480.

  • Solomon, S., , D. Qin, , M. Manning, , M. Marquis, , K. Averyt, , M. M. B. Tignor, , H. L. Miller Jr., , and Z. Chen, Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Stackhouse, P. W., Jr., , and G. L. Stephens, 1991: A theoretical and observational study of the radiative properties of cirrus clouds: Results from FIRE 1986. J. Atmos. Sci., 48, 20442059.

    • Search Google Scholar
    • Export Citation
  • Stamnes, K., , S. Tsay, , W. Wiscombe, , and K. Jayaweera, 1988: Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt., 27, 25022509.

    • Search Google Scholar
    • Export Citation
  • Strauss, B., , R. Meerkötter, , B. Wissinger, , P. Wendling, , and M. Hess, 1997: On the regional climatic impact of contrails: Microphysical and radiative properties of contrails and natural cirrus clouds. Ann. Geophys., 15, 14571467.

    • Search Google Scholar
    • Export Citation
  • Stuber, N., , P. Forster, , G. Rädel, , and K. Shine, 2006: The importance of the diurnal and annual cycle of air traffic for contrail radiative forcing. Nature, 441, 864867.

    • Search Google Scholar
    • Export Citation
  • Sun, W., , Q. Fu, , and Z. Chen, 1999: Finite-difference time-domain solution of light scattering by dielectric particles with a perfectly matched layer absorbing boundary condition. Appl. Opt., 38, 31413151.

    • Search Google Scholar
    • Export Citation
  • Yang, P., , and K. N. Liou, 1996: Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space. J. Opt. Soc. Amer. A, 13, 20722085.

    • Search Google Scholar
    • Export Citation
  • Yang, P., , K. N. Liou, , K. Wyser, , and D. Mitchell, 2000: Parameterization of the scattering and absorption properties of individual ice crystals. J. Geophys. Res., 105, 46994718.

    • Search Google Scholar
    • Export Citation
  • Yang, P., , H. Wei, , H.-L. Huang, , B. A. Baum, , Y. X. Hu, , G. W. Kattawar, , M. I. Mishchenko, , and Q. Fu, 2005: Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region. Appl. Opt., 44, 55125523.

    • Search Google Scholar
    • Export Citation
  • Yang, P., , G. Hong, , A. E. Dessler, , S. C. Ou, , K.-N. Liou, , P. Minnis, , and Harshvardhan, 2010: Contrails and induced cirrus: Optics and radiation. Bull. Amer. Meteor. Soc., 91, 473478.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., , A. Macke, , and F. Albers, 1999: Effect of crystal size spectrum and crystal shape on stratiform cirrus radiative forcing. Atmos. Res., 52, 5975.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 16 16 5
PDF Downloads 6 6 2

Simulations of Contrail Optical Properties and Radiative Forcing for Various Crystal Shapes

View More View Less
  • 1 Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland
  • 2 California Institute of Technology, Pasadena, California
© Get Permissions
Restricted access

Abstract

The aim of this study is to investigate the sensitivity of radiative-forcing computations to various contrail crystal shape models. Contrail optical properties in the shortwave and longwave ranges are derived using a ray-tracing geometric method and the discrete dipole approximation method, respectively. Both methods present good correspondence of the single-scattering albedo and the asymmetry parameter in a transition range (3–8 μm). There are substantial differences in single-scattering properties among 10 crystal models investigated here (e.g., hexagonal columns and plates with different aspect ratios, and spherical particles). The single-scattering albedo and the asymmetry parameter both vary by up to 0.1 among various crystal shapes. The computed single-scattering properties are incorporated in the moderate-resolution atmospheric radiance and transmittance model (MODTRAN) radiative transfer code to simulate solar and infrared fluxes at the top of the atmosphere. Particle shapes have a strong impact on the contrail radiative forcing in both the shortwave and longwave ranges. The differences in the net radiative forcing among optical models reach 50% with respect to the mean model value. The hexagonal-column and hexagonal-plate particles show the smallest net radiative forcing, and the largest forcing is obtained for the spheres. The balance between the shortwave forcing and longwave forcing is highly sensitive with respect to the assumed crystal shape and may even change the sign of the net forcing. The optical depth at which the mean diurnal radiative forcing changes sign from positive to negative varies from 4.5 to 10 for a surface albedo of 0.2 and from 2 to 6.5 for a surface albedo of 0.05. Contrails are probably never that optically thick (except for some aged contrail cirrus), however, and so will not have a cooling effect on climate.

Corresponding author address: Krzysztof M. Markowicz, Institute of Geophysics, Faculty of Physics, University of Warsaw, Pasteura 7, 02093 Warsaw, Poland. E-mail: kmark@igf.fuw.edu.pl

Abstract

The aim of this study is to investigate the sensitivity of radiative-forcing computations to various contrail crystal shape models. Contrail optical properties in the shortwave and longwave ranges are derived using a ray-tracing geometric method and the discrete dipole approximation method, respectively. Both methods present good correspondence of the single-scattering albedo and the asymmetry parameter in a transition range (3–8 μm). There are substantial differences in single-scattering properties among 10 crystal models investigated here (e.g., hexagonal columns and plates with different aspect ratios, and spherical particles). The single-scattering albedo and the asymmetry parameter both vary by up to 0.1 among various crystal shapes. The computed single-scattering properties are incorporated in the moderate-resolution atmospheric radiance and transmittance model (MODTRAN) radiative transfer code to simulate solar and infrared fluxes at the top of the atmosphere. Particle shapes have a strong impact on the contrail radiative forcing in both the shortwave and longwave ranges. The differences in the net radiative forcing among optical models reach 50% with respect to the mean model value. The hexagonal-column and hexagonal-plate particles show the smallest net radiative forcing, and the largest forcing is obtained for the spheres. The balance between the shortwave forcing and longwave forcing is highly sensitive with respect to the assumed crystal shape and may even change the sign of the net forcing. The optical depth at which the mean diurnal radiative forcing changes sign from positive to negative varies from 4.5 to 10 for a surface albedo of 0.2 and from 2 to 6.5 for a surface albedo of 0.05. Contrails are probably never that optically thick (except for some aged contrail cirrus), however, and so will not have a cooling effect on climate.

Corresponding author address: Krzysztof M. Markowicz, Institute of Geophysics, Faculty of Physics, University of Warsaw, Pasteura 7, 02093 Warsaw, Poland. E-mail: kmark@igf.fuw.edu.pl
Save