Impact Assessment of Daily Satellite-Derived Surface Albedo in a Limited-Area NWP Model

Jure Cedilnik Meteorological Office, Slovenian Environment Agency, Ljubljana, Slovenia

Search for other papers by Jure Cedilnik in
Current site
Google Scholar
PubMed
Close
,
Dominique Carrer Centre National de Recherches Météorologiques-Groupe d’Etudes de l’Atmosphère Météorologique, Météo-France/Centre National de la Recherche Scientifique, Toulouse, France

Search for other papers by Dominique Carrer in
Current site
Google Scholar
PubMed
Close
,
Jean-François Mahfouf Centre National de Recherches Météorologiques-Groupe d’Etudes de l’Atmosphère Météorologique, Météo-France/Centre National de la Recherche Scientifique, Toulouse, France

Search for other papers by Jean-François Mahfouf in
Current site
Google Scholar
PubMed
Close
, and
Jean-Louis Roujean Centre National de Recherches Météorologiques-Groupe d’Etudes de l’Atmosphère Météorologique, Météo-France/Centre National de la Recherche Scientifique, Toulouse, France

Search for other papers by Jean-Louis Roujean in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study examines the impact of daily satellite-derived albedos on short-range forecasts in a limited-area numerical weather prediction (NWP) model over Europe. Contrary to previous studies in which satellite products were used to derive monthly “climatologies,” a daily surface (snow free) albedo is analyzed by a Kalman filter. The filter combines optimally a satellite product derived from the Meteosat Second Generation geostationary satellite [and produced by the Land Surface Analyses–Satellite Application Facility of the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT)], an albedo climatology, and a priori information given by “persistence.” The surface albedo analyzed for a given day is used as boundary conditions of the NWP model to run forecasts starting the following day. Results from short-range forecasts over a 1-yr period reveal the capacity of satellite information to reduce model biases and RMSE in screen-level temperature (during daytime and intermediate seasons). The impact on forecast scores is larger when considering the analyzed surface albedo rather than another climatologically based albedo product. From comparisons with measurements from three flux-tower stations over mostly homogeneous French forests, it is seen that the model biases in surface net radiation are significantly reduced. An impact on the whole planetary boundary layer, particularly in summer, results from the use of an observed surface albedo. An unexpected behavior produced in summer by the satellite-derived albedo on surface temperature is also explained. The forecast runs presented here, performed in dynamical adaptation mode, will be complemented later on by data assimilation experiments over typically monthly periods.

Corresponding author address: Jean-François Mahfouf, CNRM/GAME, Météo-France/CNRS, 42, Avenue G. Coriolis, 31057 Toulouse CEDEX 01, France. E-mail: jean-francois.mahfouf@meteo.fr

Abstract

This study examines the impact of daily satellite-derived albedos on short-range forecasts in a limited-area numerical weather prediction (NWP) model over Europe. Contrary to previous studies in which satellite products were used to derive monthly “climatologies,” a daily surface (snow free) albedo is analyzed by a Kalman filter. The filter combines optimally a satellite product derived from the Meteosat Second Generation geostationary satellite [and produced by the Land Surface Analyses–Satellite Application Facility of the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT)], an albedo climatology, and a priori information given by “persistence.” The surface albedo analyzed for a given day is used as boundary conditions of the NWP model to run forecasts starting the following day. Results from short-range forecasts over a 1-yr period reveal the capacity of satellite information to reduce model biases and RMSE in screen-level temperature (during daytime and intermediate seasons). The impact on forecast scores is larger when considering the analyzed surface albedo rather than another climatologically based albedo product. From comparisons with measurements from three flux-tower stations over mostly homogeneous French forests, it is seen that the model biases in surface net radiation are significantly reduced. An impact on the whole planetary boundary layer, particularly in summer, results from the use of an observed surface albedo. An unexpected behavior produced in summer by the satellite-derived albedo on surface temperature is also explained. The forecast runs presented here, performed in dynamical adaptation mode, will be complemented later on by data assimilation experiments over typically monthly periods.

Corresponding author address: Jean-François Mahfouf, CNRM/GAME, Météo-France/CNRS, 42, Avenue G. Coriolis, 31057 Toulouse CEDEX 01, France. E-mail: jean-francois.mahfouf@meteo.fr
Save
  • Betts, A. K., J. H. Ball, A. C. M. Beljaars, M. J. Miller, and P. A. Viterbo, 1996: The land surface-atmosphere interaction: A review based on observational and global modeling perspectives. J. Geophys. Res., 101, 72097225.

    • Search Google Scholar
    • Export Citation
  • Betts, R. A., 2000: Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature, 408, 187190.

  • Bubnova, R., G. Hello, P. Bénard, and J.-F. Geleyn, 1995: Integration of the fully elastic equations cast in the hydrostatic pressure terrain-following coordinate in the framework of the ARPEGE/ALADIN NWP system. Mon. Wea. Rev., 123, 515535.

    • Search Google Scholar
    • Export Citation
  • Carrer, D., J.-L. Roujean, O. Hautecoeur, and T. Elias, 2010a: Daily estimates of aerosol optical thickness over land surface based on a directional and temporal analysis of SEVIRI MSG visible observations. J. Geophys. Res., 115, D10208, doi:10.1029/2009JD012272.

    • Search Google Scholar
    • Export Citation
  • Carrer, D., J.-L. Roujean, and C. Meurey, 2010b: Comparing operational MSG/SEVIRI land surface albedo products from Land SAF with ground measurements and MODIS. IEEE Trans. Geosci. Remote Sens., 48, 17141728, doi:10.1109/TGRS.2009.2034530.

    • Search Google Scholar
    • Export Citation
  • Champeaux, D., D. Arcos, E. Bazile, D. Giard, J.-P. Goutorbe, F. Habets, J. Noilhan, and J.-L. Roujean, 1999: AVHRR-derived vegetation mapping over western Europe for use in numerical weather prediction models. Int. J. Remote Sens., 21, 11831199.

    • Search Google Scholar
    • Export Citation
  • Charney, J., W. J. Quirk, S.-H. Chow, and J. Kornfield, 1977: A comparative study of the effects of albedo change on drought in semi-arid regions. J. Atmos. Sci., 34, 13661385.

    • Search Google Scholar
    • Export Citation
  • Courtier, P., C. Freydier, J.-F. Geleyn, F. Rabier, and M. Rochas, 1991: The ARPEGE Project at Météo-France. Proc. Workshop on Numerical Methods in Atmospheric Modelling, Vol. 2, Reading, United Kingdom, ECMWF, 135–162.

  • Csiszar, I., and G. Gutman, 1999: Mapping global land surface albedo from NOAA AVHRR. J. Geophys. Res., 104 (D6), 62156228.

  • Douville, H., and J.-F. Royer, 1996: Sensitivity of the Asian summer monsoon to an anomalous Eurasian snow cover within the Météo-France GCM. Climate Dyn., 12, 449466.

    • Search Google Scholar
    • Export Citation
  • Fischer, C., T. Montmerle, L. Berre, L. Auger, and S. E. Stefanascu, 2005: An overview of the variational assimilation of the ALADIN/France numerical weather-prediction system. Quart. J. Roy. Meteor. Soc., 131, 34773492.

    • Search Google Scholar
    • Export Citation
  • Geiger, B., D. Carrer, L. Franchistéguy, J.-L. Roujean, and C. Meurey, 2008: Land surface albedo derived on a daily basis from Meteosat Second Generation observations. IEEE Trans. Geosci. Remote Sens., 46, 38413856.

    • Search Google Scholar
    • Export Citation
  • Geleyn, J.-F., and H. J. Preuss, 1983: A new data set of satellite derived surface albedo values for operational use at ECMWF. Meteor. Atmos. Phys., 32A, 353359.

    • Search Google Scholar
    • Export Citation
  • Giard, D., and E. Bazile, 2000: Implementation of a new assimilation scheme for soil and surface variables in a global NWP model. Mon. Wea. Rev., 128, 9971015.

    • Search Google Scholar
    • Export Citation
  • Granier, A., N. Bréda, B. Longdoz, P. Gross, and J. Ngao, 2008: Ten years of fluxes and stand growth in a young beech forest at Hesse, north-eastern France. Ann. For. Sci., 65, 704, doi:10.1051/forest:2008052.

    • Search Google Scholar
    • Export Citation
  • Gu, Y., S. Bélair, J.-F. Mahfouf, and G. Deblonde, 2006: Optimal interpolation analysis technique of leaf area index using MODIS data. Remote Sens. Environ., 104, 283296.

    • Search Google Scholar
    • Export Citation
  • Guedj, S., F. Karbou, and F. Rabier, 2011: Land surface temperature estimation to improve the assimilation of SEVIRI radiances over land. J. Geophys. Res., 116, D14107, doi:10.1029/2011JD015776.

    • Search Google Scholar
    • Export Citation
  • Houldcroft, C. J., W. M. F. Grey, M. Barnsley, C. M. Taylor, S. O. Los, and P. R. J. North, 2009: New vegetation albedo parameters and global fields of soil background albedo derived from MODIS for use in a climate model. J. Hydrometeor., 10, 183198.

    • Search Google Scholar
    • Export Citation
  • Kaptue Tchuente, A., J.-L. Roujean, A. Begue, S. Los, A. Boone, J.-F. Mahfouf, D. Carrer, and D. Badiane, 2011: A new characterization of the land surface heterogeneity over Africa for use in land surface models. J. Hydrometeor., 12, 13211336.

    • Search Google Scholar
    • Export Citation
  • Laval, K., and L. Picon, 1986: Effect of the change of the surface albedo of the Sahel on climate. J. Atmos. Sci., 43, 24182429.

  • Lawrence, P. J., and T. N. Chase, 2007: Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0). J. Geophys. Res., 112, G01023, doi:10.1029/2006JG000168.

    • Search Google Scholar
    • Export Citation
  • Leroy, M., and Coauthors, 1997: Retrieval of atmospheric properties and surface bidirectional reflectances over the land from POLDER/ADEOS. J. Geophys. Res., 102, 17 02317 037.

    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., and Coauthors, 2005: Development of land surface albedo parameterization based on Moderate Resolution Imaging Spectroradiometer (MODIS) data. J. Geophys. Res., 110, D11107, doi:10.1029/2004JD005579.

    • Search Google Scholar
    • Export Citation
  • Mahfouf, J.-F., K. Bergaoui, C. Draper, F. Bouyssel, F. Taillefer, and L. Taseva, 2009: A comparison of two off-line soil analysis schemes for assimilation of screen level observations. J. Geophys. Res., 114, D08105, doi:10.1029/2008JD011077.

    • Search Google Scholar
    • Export Citation
  • Masson, V., J.-L. Champeaux, F. Chauvin, C. Meriguet, and R. Lacaze, 2003: A global database of land surface parameters at 1-km resolution in meteorological and climate models. J. Climate, 16, 12611282.

    • Search Google Scholar
    • Export Citation
  • Moody, E. G., M. D. King, C. B. Schaaf, and S. Platnick, 2008: MODIS derived spatially complete surface albedo products: Spatial and temporal pixel distribution and zonal averages. J. Appl. Meteor. Climatol., 47, 28792894.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and S. Planton, 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117, 536549.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and J.-F. Mahfouf, 1996: The ISBA land surface parameterisation scheme. Global Planet. Change, 13, 145159.

  • Pielke, R. A., and R. Avissar, 1990: Influence of landscape structure on local and regional climate. Landscape Ecol., 4, 133155.

  • Pinty, B., F. Roveda, M. M. Verstraete, N. Gobron, Y. Govaerts, J. V. Martonchik, D. J. Diner, and R. A. Kahn, 2000: Surface albedo retrieval from Meteosat: Part 1: Theory. J. Geophys. Res., 105, 18 09918 112.

    • Search Google Scholar
    • Export Citation
  • Preuss, H. J., and J.-F. Geleyn, 1980: Surface albedos derived from satellite data and their impact on forecast models. Meteor. Atmos. Phys., 29A, 345356.

    • Search Google Scholar
    • Export Citation
  • Samain, O., B. Geiger, and J.-L. Roujean, 2006: Spectral normalization and fusion of optical sensors for the retrieval of BRDF and albedo: Application to VEGETATION, MODIS, and MERIS data sets. IEEE Trans. Geosci. Remote Sens., 44, 31663179.

    • Search Google Scholar
    • Export Citation
  • Samain, O., J.-L. Roujean, and B. Geiger, 2007: Use of a Kalman filter for the retrieval of surface BRDF coefficients with a time-evolving model based on the ECOCLIMAP land cover classification. Remote Sens. Environ., 112, 13371346.

    • Search Google Scholar
    • Export Citation
  • Schaaf, C. B., and Coauthors, 2002: First operational BRDF, albedo and nadir reflectance products from MODIS. Remote Sens. Environ., 83, 135148.

    • Search Google Scholar
    • Export Citation
  • Schaaf, C. B., J. Cihlar, A. Belward, E. Dutton, and M. Verstraete, 2009: Albedo and reflectance anisotropy: ECV-T8—Assessment of the status of the development of standards for the terrestrial essential climate variables. Global Terrestrial Observing System Rep. 63, 18 pp. [Available online at http://www.fao.org/gtos/doc/ECVs/T08/T08.pdf.]

  • Strugnell, N. C., and W. Lucht, 2001: An algorithm to infer continental-scale albedo from AVHRR data, land cover class, and field observations of typical BRDFs. J. Climate, 14, 13601376.

    • Search Google Scholar
    • Export Citation
  • Strugnell, N. C., W. Lucht, and C. Schaaf, 2001: A global albedo data set derived from AVHRR data for use in climate simulations. Geophys. Res. Lett., 28, 191194.

    • Search Google Scholar
    • Export Citation
  • Sud, Y., and M. Fennessy, 1982: A study of the influence of surface albedo on July circulation in semi-arid regions using the GLAS GCM. Int. J. Climatol., 2, 105125.

    • Search Google Scholar
    • Export Citation
  • Taberner, M., B. Pinty, Y. Govaerts, S. Liang, M. M. Verstraete, N. Gobron, and J.-L. Widlowski, 2010: Comparison of MISR and MODIS land surface albedos: Methodology. J. Geophys. Res., 115, D05101, doi:10.1029/2009JD012665.

    • Search Google Scholar
    • Export Citation
  • Trigo, I. F., and Coauthors, 2010: The Satellite Application Facility for Land Surface Analysis. Int. J. Remote Sens., 32, 2725, doi:10.1080/01431161003743199.

    • Search Google Scholar
    • Export Citation
  • Wilson, M., and A. Henderson-Sellers, 1985: A global archive of land cover and soils data for use in general circulation models. J. Climate, 5, 119143.

    • Search Google Scholar
    • Export Citation
  • Yucel, I., 2006: Effects of implementing MODIS land cover and albedo in MM5 at two contrasting U.S. regions. J. Hydrometeor., 7, 10431060.

    • Search Google Scholar
    • Export Citation
  • Zhang, D., and R. A. Anthes, 1982: A high-resolution model of the planetary boundary layer—Sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor., 21, 15941609.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1873 1642 54
PDF Downloads 257 74 3