Validation of Satellite-Derived Atmospheric Motion Vectors and Analyses around Tropical Disturbances

John Sears Cooperative Institute for Meteorological Satellite Studies, and Space Science and Engineering Center, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by John Sears in
Current site
Google Scholar
PubMed
Close
and
Christopher S. Velden Cooperative Institute for Meteorological Satellite Studies, and Space Science and Engineering Center, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Christopher S. Velden in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Fields of atmospheric motion vectors (AMVs) are routinely derived by tracking features in sequential geostationary satellite infrared, water vapor, and visible-channel imagery. While AMVs produced operationally by global data centers are routinely evaluated against rawinsondes, there is a relative dearth of validation opportunities over the tropical oceans—in particular, in the vicinity of tropical disturbances when anomalous flow fields and strongly sheared environments commonly exist. A field experiment in 2010 called Pre-Depression Investigation of Cloud-Systems in the Tropics (PREDICT) was conducted in the tropical west Atlantic Ocean and provides an opportunity to evaluate the quality of tropical AMVs and analyses derived from them. The importance of such a verification is threefold: 1) AMVs often provide the only input data for numerical weather prediction (NWP) over cloudy areas of the tropical oceans, 2) NWP data assimilation methods are increasingly reliant on accurate flow-dependent observation-error characteristics, and 3) global tropical analysis and forecast centers often rely on analyses and diagnostic products derived from the AMV fields. In this paper, the authors utilize dropsonde information from high-flying PREDICT aircraft to identify AMV characteristics and to better understand their errors in tropical-disturbance situations. It is found that, in general, the AMV observation errors are close to those identified in global validation studies. However, some distinct characteristics are uncovered in certain regimes associated with tropical disturbances. High-resolution analyses derived from the AMV fields are also examined and are found to be more reflective of anomalous flow fields than the respective Global Forecast System global model analyses.

Corresponding author address: John Sears, Space Science and Engineering Center, 1225 West Dayton St., Madison, WI 53706. E-mail: john.sears@ssec.wisc.edu

Abstract

Fields of atmospheric motion vectors (AMVs) are routinely derived by tracking features in sequential geostationary satellite infrared, water vapor, and visible-channel imagery. While AMVs produced operationally by global data centers are routinely evaluated against rawinsondes, there is a relative dearth of validation opportunities over the tropical oceans—in particular, in the vicinity of tropical disturbances when anomalous flow fields and strongly sheared environments commonly exist. A field experiment in 2010 called Pre-Depression Investigation of Cloud-Systems in the Tropics (PREDICT) was conducted in the tropical west Atlantic Ocean and provides an opportunity to evaluate the quality of tropical AMVs and analyses derived from them. The importance of such a verification is threefold: 1) AMVs often provide the only input data for numerical weather prediction (NWP) over cloudy areas of the tropical oceans, 2) NWP data assimilation methods are increasingly reliant on accurate flow-dependent observation-error characteristics, and 3) global tropical analysis and forecast centers often rely on analyses and diagnostic products derived from the AMV fields. In this paper, the authors utilize dropsonde information from high-flying PREDICT aircraft to identify AMV characteristics and to better understand their errors in tropical-disturbance situations. It is found that, in general, the AMV observation errors are close to those identified in global validation studies. However, some distinct characteristics are uncovered in certain regimes associated with tropical disturbances. High-resolution analyses derived from the AMV fields are also examined and are found to be more reflective of anomalous flow fields than the respective Global Forecast System global model analyses.

Corresponding author address: John Sears, Space Science and Engineering Center, 1225 West Dayton St., Madison, WI 53706. E-mail: john.sears@ssec.wisc.edu
Save
  • Bedka, K. M., and J. R. Mecikalski, 2005: Application of satellite-derived atmospheric motion vectors for estimating mesoscale flows. J. Appl. Meteor., 44, 17611772.

    • Search Google Scholar
    • Export Citation
  • Bedka, K. M., C. S. Velden, R. A. Petersen, W. F. Feltz, and J. R. Mecikalski, 2009: Comparisons of satellite-derived atmospheric motion vectors, rawinsondes, and NOAA Wind Profiler observations. J. Appl. Meteor. Climatol., 48, 15421561.

    • Search Google Scholar
    • Export Citation
  • Berger, H., R. H. Langland, C. S. Velden, C. A. Reynolds, and P. M. Pauley, 2011: Impact of enhanced satellite-derived atmospheric motion vector observations on numerical tropical cyclone track forecasts in the western North Pacific during TPARC/TCS-08. J. Appl. Meteor. Climatol., 50, 23092318.

    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., and C. S. Velden, 2002: Application of surface-adjusted GOES low-level cloud-drift winds in the environment of Atlantic tropical cyclones. Part I: Methodology and validation. Mon. Wea. Rev., 130, 13331346.

    • Search Google Scholar
    • Export Citation
  • Franklin, J. L., J. Kaplan, C. S. Velden, and C. M. Hayden, 1990: Some comparisons of VAS and dropwindsonde data over the subtropical Atlantic. Mon. Wea. Rev., 118, 18691887.

    • Search Google Scholar
    • Export Citation
  • Goerss, J. S., C. S. Velden, and J. D. Hawkins, 1998: The impact of multispectral GOES-8 wind information on Atlantic tropical cyclone track forecasts in 1995. Part II: NOGAPS forecasts. Mon. Wea. Rev., 126, 12191227.

    • Search Google Scholar
    • Export Citation
  • Hock, T. F., and J. L. Franklin, 1999: The NCAR GPS dropwindsonde. Bull. Amer. Meteor. Soc., 80, 407420.

  • Holmlund, K., C. S. Velden, and M. Rohn, 2001: Enhanced automated quality control applied to high-density satellite-derived winds. Mon. Wea. Rev., 129, 517529.

    • Search Google Scholar
    • Export Citation
  • Kelly, G., , T. McNally, J.-N. Thepaut, and M. Szyndel, 2004: OSEs of all main data types in the ECMWF operation system. Proc. Third WMO Workshop on the Impact of Various Observing Systems on Numerical Weather Prediction, Alpbach, Austria, WMO World Weather Watch (Tech. Doc. WMO/TD 1228), 63–94. [Available online at http://www.wmo.int/pages/prog/www/GOS/Alpbach2004/Proceedings.pdf.]

    • Search Google Scholar
    • Export Citation
  • Key, J. R., D. A. Santek, C. S. Velden, N. Bormann, J.-N. Thepaut, L. P. Riishojgaard, Y. Zhu, and W. P. Menzel, 2003: Cloud-drift and water vapor winds in the Polar regions from MODIS. IEEE Trans. Geosci. Remote Sens., 41, 482492.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., C. D. Thorncroft, and N. M. J. Hall, 2006: Three-dimensional structure and dynamics of African easterly waves. Part I: Observations. J. Atmos. Sci., 63, 22122230.

    • Search Google Scholar
    • Export Citation
  • Langland, R. H., C. Velden, P. M. Pauley, and H. Berger, 2009: Impact of satellite-derived rapid-scan wind observations on numerical model forecasts of Hurricane Katrina. Mon. Wea. Rev., 137, 16151622.

    • Search Google Scholar
    • Export Citation
  • Leslie, L. M., J. F. LeMarshall, R. P. Morison, C. Spinoso, R. J. Purser, N. Pescod, and R. Seecamp, 1998: Improved hurricane track forecasting from the continuous assimilation of high quality satellite wind data. Mon. Wea. Rev., 126, 12481258.

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., 2001: Cloud tracking with satellite imagery: From the pioneering work of Ted Fujita to the present. Bull. Amer. Meteor. Soc., 82, 3347.

    • Search Google Scholar
    • Export Citation
  • Merrill, R. T., and C. S. Velden, 1996: A three-dimensional analysis of the outflow layer of Supertyphoon Flo (1990). Mon. Wea. Rev., 124, 4763.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and Coauthors, 2012: The Pre-Depression Investigation of Cloud-Systems in the Tropics (PREDICT) experiment: Scientific basis, new analysis tools, and some first results. Bull. Amer. Meteor. Soc., 93, 153172.

    • Search Google Scholar
    • Export Citation
  • Poteat, K. O., 1973: A comparison of satellite-derived, low-level and cirrus-level winds with conventional wind observations. J. Appl. Meteor., 12, 14161419.

    • Search Google Scholar
    • Export Citation
  • Pu, Z., X. Li, C. S. Velden, S. D. Aberson, and W. T. Liu, 2008: The impact of aircraft dropsonde and satellite wind data on numerical simulations of two landfalling tropical storms during the Tropical Cloud Systems and Processes experiment. Wea. Forecasting, 23, 6279.

    • Search Google Scholar
    • Export Citation
  • Rao, P. A., C. S. Velden, and S. A. Braun, 2002: The vertical error characteristics of GOES-derived winds: Description and experiments with numerical weather prediction. J. Appl. Meteor., 41, 253271.

    • Search Google Scholar
    • Export Citation
  • Rodgers, E., and R. C. Gentry, 1983: Monitoring tropical-cyclone intensity using environmental wind fields derived from short-interval satellite images. Mon. Wea. Rev., 111, 979996.

    • Search Google Scholar
    • Export Citation
  • Sears, J., 2011: Investigating the role of the upper-levels in tropical cyclogenesis. M.S. thesis, Dept. of Oceanographic and Atmospheric Science, University of Wisconsin—Madison, 96 pp.

  • Soden, B. J., C. S. Velden, and R. E. Tuleya, 2001: The impact of satellite winds on experimental GFDL hurricane model forecasts. Mon. Wea. Rev., 129, 835852.

    • Search Google Scholar
    • Export Citation
  • Velden, C. S., and K. M. Bedka, 2009: Identifying the uncertainty in determining satellite-derived atmospheric motion vector height attribution. J. Appl. Meteor. Climatol., 48, 450463.

    • Search Google Scholar
    • Export Citation
  • Velden, C. S., C. M. Hayden, W. P. Menzel, J. L. Franklin, and J. S. Lynch, 1992: The impact of satellite-derived winds on numerical hurricane track forecasting. Wea. Forecasting, 7, 107118.

    • Search Google Scholar
    • Export Citation
  • Velden, C. S., C. M. Hayden, S. J. Nieman, W. P. Menzel, S. Wanzong, and J. S. Goerss, 1997: Upper-tropospheric winds derived from geostationary satellite water vapor observations. Bull. Amer. Meteor. Soc., 78, 173195.

    • Search Google Scholar
    • Export Citation
  • Velden, C. S., T. Olander, and S. Wanzong, 1998: The impact of multispectral GOES-8 wind information on Atlantic tropical cyclone track forecasts in 1995. Part I: Dataset methodology, description, and case analysis. Mon. Wea. Rev., 126, 12021218.

    • Search Google Scholar
    • Export Citation
  • Velden, C. S., and Coauthors, 2005: Recent innovations in deriving tropospheric winds from meteorological satellites. Bull. Amer. Meteor. Soc., 86, 205223.

    • Search Google Scholar
    • Export Citation
  • Viezee, W., R. M. Endlich, and S. M. Serebreny, 1967: Satellite-viewed jet stream clouds in relation to the observed wind field. J. Appl. Meteor., 6, 929935.

    • Search Google Scholar
    • Export Citation
  • Xiao, Q., X. Zou, M. Pondeca, M. A. Shapiro, and C. Velden, 2002: Impact of GMS-5 and GOES-9 satellite-derived winds on the prediction of a NORPEX extratropical cyclone. Mon. Wea. Rev., 130, 507528.

    • Search Google Scholar
    • Export Citation
  • Zapotocny, T. H., J. A. Jung, J. F. Le Marshall, and R. E. Treadon, 2007: A two-season impact study of satellite and in situ data in the NCEP Global Data Assimilation System. Wea. Forecasting, 22, 887909.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 790 496 43
PDF Downloads 275 65 8