• Aguilar, E., I. Auer, M. Brunet, T. C. Peterson, and J. Wieringa, 2003: Guidance on metadata and homogenization. WMO TD 1186, 53 pp.

  • Akaike, H., 1973: Information theory and an extension of the maximum likelihood principle. Proceedings of the Second International Symposium on Information Theory, B. N. Petrov and F. Csádki, Eds., Akadémiai Kiadó, 267–281.

    • Search Google Scholar
    • Export Citation
  • Alexandersson, H., and A. Moberg, 1997: Homogenization of Swedish temperature data. Part I: Homogeneity test for linear trends. Int. J. Climatol., 17, 2534.

    • Search Google Scholar
    • Export Citation
  • Bai, J., and P. Perron, 1998: Estimating and testing linear models with multiple structural changes. Econometrica, 66, 4778.

  • Baker, J., 1987: Reducing bias and inefficiency in the selection algorithm. Proc. Second Int. Conf. on Genetic Algorithms and Their Application, Cambridge, MA, Massachusetts Institute of Technology, 14–21.

    • Search Google Scholar
    • Export Citation
  • Blickle, T., and L. Thiele, 1995: A mathematical analysis of tournament selection. Proc. Sixth Int. Conf. on Genetic Algorithms, Pittsburgh, PA, University of Pittsburgh, 9–16.

    • Search Google Scholar
    • Export Citation
  • Cappé, O., E. Moulines, and T. Rydén, 2005: Inference in Hidden Markov Models. Springer, 672 pp.

  • Caussinus, H., and O. Mestre, 2004: Detection and correction of artificial shifts in climate series. Appl. Stat., 53, 405425.

  • Celeux, G., and J. B. Durand, 2008: Selecting hidden Markov model state number with cross-validated likelihood. Comput. Stat., 23, 541564.

    • Search Google Scholar
    • Export Citation
  • Chambaz, A., A. Garivier, and E. Gassiat, 2009: A minimum description length approach to hidden Markov models with Poisson and Gaussian emissions. Application to order identification. J. Stat. Plann. Inference, 139, 962977.

    • Search Google Scholar
    • Export Citation
  • Davis, R. A., T. C. M. Lee, and G. A. Rodriguez-Yam, 2006: Structural break estimation for nonstationary time series models. J. Amer. Stat. Assoc., 101, 223239.

    • Search Google Scholar
    • Export Citation
  • DeGaetano, A. T., 2006: Attributes of several methods for detecting discontinuities in mean temperature series. J. Climate, 19, 838853.

    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., and T. C. Peterson, 1995: A new method for detecting undocumented discontinuities in climatological time series. Int. J. Climatol., 15, 369377.

    • Search Google Scholar
    • Export Citation
  • Ephraim, Y., and W. J. J. Roberts, 2005: Revisiting autoregressive hidden Markov modeling of speech signals. IEEE Signal Process. Lett., 12, 166169.

    • Search Google Scholar
    • Export Citation
  • Forney, G. D., 1973: The Viterbi algorithm. Proc. IEEE, 61, 268278.

  • Fridlyand, J., A. M. Snijders, D. Pinkel, D. G. Albertson, and A. N. Jain, 2004: Hidden Markov models approach to the analysis of array CGH data. J. Multivariate Anal., 90, 132153.

    • Search Google Scholar
    • Export Citation
  • Frühwirth-Schnatter, S., 2006: Finite Mixture and Markov Switching Models. Springer, 492 pp.

  • Gassiat, E., 2002: Likelihood ratio inequalities with applications to various mixtures. Ann. Inst. Henri Poincaré, 38, 897906.

  • Grünwald, P. D., 2007: The Minimum Description Length Principle. MIT Press, 703 pp.

  • Holland, J. H., 1992: Adaptation in Natural and Artificial Systems. MIT Press, 211 pp.

  • Hubert, P., 1997: Change points in meteorological time analysis. Application of Time Series Analysis in Astronomy and Meteorology, T. Subba Rao, M. B. Priestly, and O. Lessi, Eds., Chapman and Hall, 399–412.

    • Search Google Scholar
    • Export Citation
  • Jann, A., 2006: Genetic algorithms: Towards their use in the homogenization of climatological records. Croatian Meteor. J., 41, 319.

  • Jansen, E., and Coauthors, 2007: Paleoclimate. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 433–497.

    • Search Google Scholar
    • Export Citation
  • Juang, B. H., and L. R. Rabiner, 1991: Hidden Markov models for speech recognition. Technometrics, 33, 251272.

  • Kehagias, A., 2004: A hidden Markov model segmentation procedure for hydrological and environmental time series. Stochastic Environ. Res. Risk Assess., 18, 117130.

    • Search Google Scholar
    • Export Citation
  • Kehagias, A., and V. Fortin, 2006: Time series segmentation with shifting means hidden Markov models. Nonlinear Processes Geophys., 13, 114.

    • Search Google Scholar
    • Export Citation
  • Kehagias, A., E. Nidelkou, and V. Petridis, 2005: A dynamic programming segmentation procedure for hydrological and environmental time series. Stochastic Environ. Res. Risk Assess., 20, 7794.

    • Search Google Scholar
    • Export Citation
  • Kim, H. J., and D. Siegmund, 1989: The likelihood ratio test for a change point in simple linear regression. Biometrika, 76, 409423.

  • Koop, G., and S. M. Potter, 2009: Prior elicitation in multiple change-point models. Int. Econ. Rev., 50, 751772.

  • Kuglitsch, F. G., A. Toreti, E. Xoplaki, P. M. Della-Marta, J. Luterbacher, and H. Wanner, 2009: Homogenization of daily maximum temperature series in the Mediterranean. J. Geophys. Res., 114, D15108, doi:10.1029/2008JD011606.

    • Search Google Scholar
    • Export Citation
  • Kwong, S., C. W. Chau, K. F. Man, and K. S. Tang, 2001: Optimisation of HMM topology and its model parameters by genetic algorithms. Pattern Recognit., 34, 509522.

    • Search Google Scholar
    • Export Citation
  • Lee, T. C. M., 2001: An introduction to coding theory and the two-part minimum description length principle. Int. Stat. Rev., 69, 169183.

    • Search Google Scholar
    • Export Citation
  • Li, S., and R. Lund, 2012: Multiple changepoint detection via genetic algorithms. J. Climate, 25, 674686.

  • Lu, Q., R. Lund, and T. C. M. Lee, 2010: An MDL approach to the climate segmentation problem. Ann. Appl. Stat., 4, 299319.

  • Lund, R., X. L. Wang, Q. Lu, J. Reeves, C. Gallagher, and Y. Feng, 2007: Changepoint detection in periodic and autocorrelated time series. J. Climate, 20, 51785190.

    • Search Google Scholar
    • Export Citation
  • MacDonald, I. L., and W. Zucchini, 1997: Hidden Markov and Other Models for Discrete-Valued Time Series. Chapman and Hall, 256 pp.

  • MacKay, R. J., 2002: Estimating the order of a hidden Markov model. Can. J. Stat., 30, 573589.

  • Menne, M. J., and C. N. Williams, 2005: Detection of undocumented changepoints using multiple test statistics and composite reference series. J. Climate, 18, 42714286.

    • Search Google Scholar
    • Export Citation
  • Mielke, P. W., K. J. Berry, and G. W. Brier, 1981: Application of multi-response permutation procedures for examining seasonal changes in monthly mean sea level pressure patterns. Mon. Wea. Rev., 109, 120126.

    • Search Google Scholar
    • Export Citation
  • Miranda, P. M. A., and A. R. Tomé, 2009: Spatial structure of the evolution of surface temperature (1951–2004). Climatic Change, 93, 269284.

    • Search Google Scholar
    • Export Citation
  • Moberg, A., and Coauthors, 2006: Indices for daily temperature and precipitation extremes in Europe analyzed for the period 1901–2000. J. Geophys. Res., 111, D22106, doi:10.1029/2006JD007103.

    • Search Google Scholar
    • Export Citation
  • Pawson, S., K. Labitzke, and S. Leder, 1998: Stepwise changes in stratospheric temperature. Geophys. Res. Lett., 25, 21572160.

  • Perreault, L., J. Bernier, B. Bobee, and E. Parent, 2000: Bayesian change-point analysis in hydrometeorological time series. Part 1. The normal model revisited. J. Hydrol., 235, 221241.

    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., and D. R. Easterling, 1994: Creation of homogeneous composite climatological reference series. Int. J. Climatol., 14, 671679.

    • Search Google Scholar
    • Export Citation
  • Rabiner, L. R., 1989: A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE, 77, 257286.

  • Randall, D. A., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 589–662.

    • Search Google Scholar
    • Export Citation
  • Ray, B. K., and R. S. Tsay, 2002: Bayesian method for change-point detection in long-range dependent processes. J. Time Ser. Anal., 23, 687705.

    • Search Google Scholar
    • Export Citation
  • Reeves, J., J. Chen, X. L. Wang, R. Lund, and Q. Lu, 2007: A review and comparison of changepoint detection techniques for climate data. J. Appl. Meteor. Climatol., 46, 900915.

    • Search Google Scholar
    • Export Citation
  • Robinson, L. F., T. D. Wager, and M. A. Lindquist, 2010: Change point estimation in multi-subject fMRI studies. NeuroImage, 49, 15811592.

    • Search Google Scholar
    • Export Citation
  • Schwarz, G., 1978: Estimating the dimension of a model. Ann. Stat., 6, 461464.

  • Swami, D. K., and R. C. Jain, 2006: PAMC: Partitioning around medoids for classification. Inf. Technol. J., 5, 11021105.

  • Tai, Y. C., M. N. Kvale, and J. S. Witte, 2010: Segmentation and estimation for SNP microarrays: A Bayesian multiple change-point approach. Biometrics, 66, 675683.

    • Search Google Scholar
    • Export Citation
  • Tartakovsky, A. G., B. L. Rozovskii, R. Blažek, and H. Kim, 2006: Detection of intrusions in information systems by sequential change-point methods. Stat. Methodol., 3, 252293.

    • Search Google Scholar
    • Export Citation
  • Toreti, A., and F. Desiato, 2008: Temperature trend over Italy from 1961 to 2004. Theor. Appl. Climatol., 91, 5158.

  • Toreti, A., G. Fioravanti, W. Perconti, and F. Desiato, 2009: Annual and seasonal precipitation over Italy from 1961 to 2006. Int. J. Climatol., 29, 19761987.

    • Search Google Scholar
    • Export Citation
  • Toreti, A., F. G. Kuglitsch, E. Xoplaki, J. Luterbacher, and H. Wanner, 2010a: A novel method for the homogenization of daily temperature series and its relevance for climate change analysis. J. Climate, 23, 53255331.

    • Search Google Scholar
    • Export Citation
  • Toreti, A., E. Xoplaki, D. Maraun, F. G. Kuglitsch, H. Wanner, and J. Luterbacher, 2010b: Characterisation of extreme winter precipitation in Mediterranean coastal sites and associated anomalous atmospheric circulation patterns. Nat. Hazards Earth Syst., 10, 10371050.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1990: Recent observed interdecadal climate changes in the Northern Hemisphere. Bull. Amer. Meteor. Soc., 71, 988993.

    • Search Google Scholar
    • Export Citation
  • Viterbi, A. J., 2006: A personal history of the Viterbi algorithm. IEEE Signal Process. Mag., 120, 120122.

  • Wang, X. L., 2008a: Accounting for autocorrelation in detecting mean shifts in climate data series using the penalized maximal t or F test. J. Appl. Meteor. Climatol., 47, 24232444.

    • Search Google Scholar
    • Export Citation
  • Wang, X. L., 2008b: Penalized maximal F test for detecting undocumented mean shift without trend change. J. Atmos. Oceanic Technol., 25, 368384.

    • Search Google Scholar
    • Export Citation
  • Wang, X. L., Q. H. Wen, and Y. Wu, 2007: Penalized maximal t test for detecting undocumented mean change in climate data series. J. Appl. Meteor. Climatol., 46, 916931.

    • Search Google Scholar
    • Export Citation
  • Welch, L. R., 2003: Hidden Markov models and the Baum-Welch algorithm. IEEE Inf. Theory Soc. Newsl., 53, 1013.

  • Whitley, D., 1994: A genetic algorithm tutorial. Stat. Comput., 4, 6585.

  • Wilks, D. S., 1999: Simultaneous stochastic simulation of daily precipitation, temperature and solar radiation at multiple sites in complex terrain. Agric. For. Meteor., 96, 85101.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2005: Statistical Methods in the Atmospheric Sciences. Academic Press, 648 pp.

  • Won, K. J., A. Prügel-Bennett, and A. Krogh, 2004: Training HMM structure with genetic algorithm for biological sequence analysis. Bioinformatics, 20, 36133619.

    • Search Google Scholar
    • Export Citation
  • Xie, Y., J. Yu, and B. Ranneby, 2008: A general autoregressive model with Markov switching: Estimation and consistency. Math. Methods Stat., 17, 228240.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 140 113 13
PDF Downloads 68 58 1

A Novel Approach for the Detection of Inhomogeneities Affecting Climate Time Series

View More View Less
  • 1 Department of Geography, Climatology, Climate Dynamics and Climate Change, Justus-Liebig University of Giessen, Giessen, Germany
  • | 2 Institute of Geography, and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
  • | 3 Institute of Geography, University of Bern, Bern, Switzerland, and Department of Geography, Climatology, Climate Dynamics and Climate Change, Justus-Liebig University of Giessen, Giessen, Germany
  • | 4 Department of Geography, Climatology, Climate Dynamics and Climate Change, Justus-Liebig University of Giessen, Giessen, Germany
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Sudden changes caused by nonclimatic factors (inhomogeneities) usually affect instrumental time series of climate variables. To perform robust climate analyses based on observations, a proper identification of such changes is necessary. Here, an approach (named the “GAHMDI” method, after its components and purpose) that is based on a genetic algorithm and hidden Markov models is proposed for detection of inhomogeneities caused by changes in the mean and variance. Simulated series and a case study (winter precipitation from a weather station located in Milan, Italy) are set up to compare GAHMDI with existing methodologies and to highlight its features. For the identification of a single changepoint, GAHMDI performs similarly to other methods (e.g., standard normal homogeneity test). However, for the identification of multiple inhomogeneities and changes in variance, GAHMDI returns better results than three widespread methods by avoiding overdetection. For future applications and research in the homogenization of climate datasets (temperature and precipitation) the use of GAHMDI is encouraged, preferably in combination with another detection procedure (e.g., the method of Caussinus and Mestre) when metadata are not available. Since GAHMDI is developed in the generic context of time series segmentation, it can be applied to series of generic variables—for instance, those related to economics, biology, and informatics.

Corresponding author address: Andrea Toreti, University of Giessen, Senckenbergstr. 1, Giessen, Germany 35390. E-mail: andrea.toreti@geogr.uni-giessen.de

Abstract

Sudden changes caused by nonclimatic factors (inhomogeneities) usually affect instrumental time series of climate variables. To perform robust climate analyses based on observations, a proper identification of such changes is necessary. Here, an approach (named the “GAHMDI” method, after its components and purpose) that is based on a genetic algorithm and hidden Markov models is proposed for detection of inhomogeneities caused by changes in the mean and variance. Simulated series and a case study (winter precipitation from a weather station located in Milan, Italy) are set up to compare GAHMDI with existing methodologies and to highlight its features. For the identification of a single changepoint, GAHMDI performs similarly to other methods (e.g., standard normal homogeneity test). However, for the identification of multiple inhomogeneities and changes in variance, GAHMDI returns better results than three widespread methods by avoiding overdetection. For future applications and research in the homogenization of climate datasets (temperature and precipitation) the use of GAHMDI is encouraged, preferably in combination with another detection procedure (e.g., the method of Caussinus and Mestre) when metadata are not available. Since GAHMDI is developed in the generic context of time series segmentation, it can be applied to series of generic variables—for instance, those related to economics, biology, and informatics.

Corresponding author address: Andrea Toreti, University of Giessen, Senckenbergstr. 1, Giessen, Germany 35390. E-mail: andrea.toreti@geogr.uni-giessen.de
Save