• Adler, R. F., R. A. Mack, N. Prasad, H. Y. M. Yeh, and I. M. Hakkarinen, 1990: Aircraft microwave observations and simulations of deep convection from 18 to 183 GHz. Part I: Observations. J. Atmos. Oceanic Technol., 7, 377391.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., A. J. Heymsfield, P. Yang, and S. T. Bedka, 2005a: Bulk scattering properties for the remote sensing of ice clouds. Part I: Microphysical data and models. J. Appl. Meteor., 44, 18851895.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., P. Yang, A. J. Heymsfield, S. Platnick, M. D. King, Y-X. Hu, S. T. Bedka, 2005b: Bulk scattering properties for the remote sensing of ice clouds. Part II: Narrowband models. J. Appl. Meteor., 44, 18961911.

    • Search Google Scholar
    • Export Citation
  • Bennartz, R., and G. W. Petty, 2001: The sensitivity of microwave remote sensing observations of precipitation to ice particle size distributions. J. Appl. Meteor., 40, 345364.

    • Search Google Scholar
    • Export Citation
  • Bennartz, R. and P. Bauer, 2003: Sensitivity of microwave radiances at 85–183 GHz to precipitating ice particles. Radio Sci., 38, 8075, doi:10.1029/2002RS002626.

    • Search Google Scholar
    • Export Citation
  • Buehler, S. A., and Coauthors, 2007: A concept for a satellite mission to measure cloud ice water path, ice particle size, and cloud altitude. Quart. J. Roy. Meteor. Soc., 133, 109128.

    • Search Google Scholar
    • Export Citation
  • Deeter, M. N., and J. Vivekanandan, 2005: AMSU-B observations of mixed-phase clouds over land. J. Appl. Meteor., 44, 7285.

  • Evans, K. F., and G. L. Stephens, 1995a: Microwave radiative transfer through clouds composed of realistically shaped ice crystals. Part I: Single scattering properties. J. Atmos. Sci., 52, 20412057.

    • Search Google Scholar
    • Export Citation
  • Evans, K. F., and G. L. Stephens, 1995b: Microwave radiative transfer through clouds composed of realistically shaped ice crystals. Part II: Remote sensing of ice clouds. J. Atmos. Sci., 52, 20582072.

    • Search Google Scholar
    • Export Citation
  • Evans, K. F., J. R. Wang, P. E. Racette, G. Heymsfield, and L. Li, 2005: Ice cloud retrievals and analysis with the Compact Scanning Submillimeter Imaging Radiometer and the Cloud Radar System during CRYSTAL-FACE. J. Appl. Meteor., 44, 839859.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., and G. F. Marks, 1995: The development of SSM/I rain-rate retrieval algorithms using ground-based radar measurements. J. Atmos. Oceanic Technol., 12, 755770.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., and Coauthors, 2005: NOAA operational hydrological products derived from the Advanced Microwave Sounding Unit. IEEE Trans. Geosci. Remote Sens., 43, 10361049.

    • Search Google Scholar
    • Export Citation
  • Fulton, R. A., J. P. Breidenbach, D. J. Seo, D. A. Miller, and T. O’Bannon, 1998: The WSR-88D rainfall algorithm. Wea. Forecasting, 13, 377395.

    • Search Google Scholar
    • Export Citation
  • Gasiewski, A. J., 1992: Numerical sensitivity analysis of passive EHF and SMMW channels to tropospheric water vapor, clouds, and precipitation. IEEE Trans. Geosci. Remote Sens., 30, 859870.

    • Search Google Scholar
    • Export Citation
  • Grody, N. C., 1991: Classification of snow cover and precipitation using the Special Sensor Microwave Imager. J. Geophys. Res., 96, 74237435.

    • Search Google Scholar
    • Export Citation
  • Hakkarinen, I. M., and R. F. Adler, 1988: Observations of precipitating convective systems at 92 and 183 GHz: Aircraft results. Meteor. Atmos. Phys., 38, 164182.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., J. M. Shepherd, S. W. Bidwell, W. C. Boncyk, I. J. Caylor, S. Ameen, and W. S. Olson, 1996: Structure of Florida thunderstorms using high-altitude aircraft radiometer and radar observations. J. Appl. Meteor., 35, 17361762.

    • Search Google Scholar
    • Export Citation
  • Hong, G., P. Yang, B. A. Baum, A. J. Heymsfield, F. Weng, Q. Liu, G. Heygster, and S. A. Buehler, 2009: Scattering database in the millimeter and submillimeter wave range of 100–1000 GHz for nonspherical ice particles. J. Geophys. Res., 114, D06201, doi:10.1029/2008JD010451.

    • Search Google Scholar
    • Export Citation
  • Kim, M. J., M. S. Kulie, C. O’Dell, and R. Bennartz, 2007: Scattering of ice particles at microwave frequencies: A physically based parameterization. J. Appl. Meteor. Climatol., 46, 615633.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2001: The evolution of the Goddard Profiling Algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40, 18011820.

    • Search Google Scholar
    • Export Citation
  • Kunkee, D. B., S. D. Swadley, G. A. Poe, Y. Hong, and M. F. Werner, 2008: Special Sensor Microwave Imager Sounder (SSMIS) radiometric calibration anomalies—Part I: Identification and characterization. IEEE Trans. Geosci. Remote Sens., 46, 10171033.

    • Search Google Scholar
    • Export Citation
  • Liou, K. N., 1986: Influence of cirrus clouds on weather and climate processes: A global perspective. Mon. Wea. Rev., 114, 11671199.

  • Liou, K. N., Y. Gu, Q. Yue, and G. McFarguhar, 2008: On the correlation between ice water content and ice crystal size and its application to radiative transfer and general circulation models. Geophys. Res. Lett., 35, L13805, doi:10.1029/2008GL033918.

    • Search Google Scholar
    • Export Citation
  • Liu, G., 2004: Approximation of single scattering properties of ice and snow particles for high microwave frequencies. J. Atmos. Sci., 61, 24412456.

    • Search Google Scholar
    • Export Citation
  • Liu, G., 2008: A database of microwave single-scattering properties for nonspherical ice particles. Bull. Amer. Meteor. Soc., 89, 15631570.

    • Search Google Scholar
    • Export Citation
  • Liu, G., and J. A. Curry, 1998: Remote sensing of ice water characteristics in tropical clouds using aircraft microwave measurements. J. Appl. Meteor., 37, 337355.

    • Search Google Scholar
    • Export Citation
  • Liu, G., and J. A. Curry, 2000: Determination of ice water path and mass median particle size using multichannel microwave measurements. J. Appl. Meteor., 39, 13181329.

    • Search Google Scholar
    • Export Citation
  • Liu, G., and Y. Fu, 2001: The characteristics of tropical precipitation profiles as inferred from satellite radar measurements. J. Meteor. Soc. Japan, 79, 131143.

    • Search Google Scholar
    • Export Citation
  • Mugnai, A., and E. A. Smith, 1988: Radiative transfer to space through a precipitating cloud at multiple microwave frequencies. Part I: Model description. J. Appl. Meteor., 27, 10551073.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., 1994: Physical retrievals of over-ocean rain rate from multichannel microwave imagery. Part I: Theoretical characteristics of normalized polarization and scattering indices. Meteor. Atmos. Phys., 54, 7999.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., 1995: Frequencies and characteristics of global oceanic precipitation from shipboard present-weather report. Bull. Amer. Meteor. Soc., 76, 15931616.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., 2001: Physical and microwave radiative properties of precipitating clouds. Part I: Principal component analysis of observed multichannel microwave radiances in tropical stratiform rainfall. J. Appl. Meteor., 40, 21052114.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1990: Boundary layer structure and dynamics in outer hurricane rainbands. Part I: Mesoscale rainfall and kinematic structure. Mon. Wea. Rev., 118, 891917.

    • Search Google Scholar
    • Export Citation
  • Smith, E. A., and A. Mugnai, 1988: Radiative transfer to space through a precipitating cloud at multiple microwave frequencies. Part II: Results and analysis. J. Appl. Meteor., 27, 10741091.

    • Search Google Scholar
    • Export Citation
  • Smith, P. L., 2003: Raindrop size distributions: Exponential or gamma—Does the difference matter? J. Appl. Meteor., 42, 10311034.

  • Spencer, R. W., H. M. Goodman, and R. E. Hood, 1989: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6, 254273.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 2005: Cloud feedbacks in the climate system: A critical review. J. Climate, 18, 237273.

  • Stephens, G. L., and P. J. Webster, 1981: Clouds and climate: Sensitivity of simple systems. J. Atmos. Sci., 38, 235247.

  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22, 17641775.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., J. Turk, and V. N. Bringi, 1991: Ice water path estimation and characterization using passive microwave radiometry. J. Appl. Meteor., 30, 14071421.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G., 1984: Optical constants of ice from the ultraviolet to the microwave. Appl. Opt., 23, 12061225.

  • Warren, S. G., and R. E. Brandt, 2008: Optical constants of ice from the ultraviolet to the microwave: A revised compilation. J. Geophys. Res., 113, D14220, doi:10.1029/2007JD009744.

    • Search Google Scholar
    • Export Citation
  • Weng, F., 1992: A multi-layer discrete-ordinate method for vector radiative transfer in a vertically-inhomogeneous, emitting and scattering atmosphere. Part I: Theory. J. Quant. Spectrosc. Radiat. Transfer, 47, 1933.

    • Search Google Scholar
    • Export Citation
  • Weng, F., and N. C. Grody, 1994: Retrieval of cloud liquid water using the Special Sensor Microwave Imager (SSM/I). J. Geophys. Res., 99 (D12), 25 53525 551.

    • Search Google Scholar
    • Export Citation
  • Weng, F., and N. C. Grody, 2000: Retrieval of ice cloud parameters using a microwave imaging radiometer. J. Atmos. Sci., 57, 10691081.

    • Search Google Scholar
    • Export Citation
  • Weng, F., N. C. Grody, R. Ferraro, A. Basist, and D. Forsyth, 1997: Cloud liquid water climatology from the Special Sensor Microwave/Imager. J. Climate, 10, 10861098.

    • Search Google Scholar
    • Export Citation
  • Weng, F., L. Zhao, R. R. Ferraro, G. Poe, X. Li, and N. C. Grody, 2003: Advanced Microwave Sounding Unit cloud and precipitation algorithms. Radio Sci., 38, 80688079.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., and R. W. Spencer, 1998: SSM/I rain retrievals within a unified all-weather ocean algorithm. J. Atmos. Sci., 55, 16131627.

    • Search Google Scholar
    • Export Citation
  • Wilheit, T. T., and Coauthors, 1982: Microwave radiometric observations near 19.35, 92 and 183 GHz of precipitation in Tropical Storm Cora. J. Appl. Meteor., 21, 11371145.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and J. A. Weinman, 1984: Microwave radiances from precipitating clouds containing aspherical ice, combined phase, and liquid hydrometeors. J. Geophys. Res., 89, 71707178.

    • Search Google Scholar
    • Export Citation
  • Yan, B., and F. Weng, 2008: Intercalibration between Special Sensor Microwave Imager/Sounder and Special Sensor Microwave Imager. IEEE Trans. Geosci. Remote Sens., 46, 984995.

    • Search Google Scholar
    • Export Citation
  • Yang, P., L. Zhang, G. Hong, S. L. Nasiri, B. A. Baum, H.-L. Huang, M. D. King, and S. Platnick, 2007: Differences between collection 4 and 5 MODIS ice cloud optical/microphysical products and their impact on radiative forcing simulations. IEEE Trans. Geosci. Remote Sens., 45, 28862899.

    • Search Google Scholar
    • Export Citation
  • Zhao, L., and F. Weng, 2002: Retrieval of ice cloud parameters using the Advanced Microwave Sounding Unit. J. Appl. Meteor., 41, 384395.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 66 58 4
PDF Downloads 44 39 2

Retrieval of Cloud Ice Water Path from Special Sensor Microwave Imager/Sounder (SSMIS)

View More View Less
  • 1 I. M. Systems Group, Camp Springs, Maryland, and Nanjing University of Information Science and Technology, Nanjing, China
  • | 2 NOAA/NESDIS/Center for Satellite Applications and Research, Camp Springs, Maryland
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The Special Sensor Microwave Imager/Sounder (SSMIS) aboard the Defense Meteorological Satellite Program F-16 spacecraft measures the Earth-emitted radiation at frequencies from 19 to 183 GHz. From its high-frequency channels at 91 and 150 GHz, cloud microphysical parameters can be observed at a spatial resolution of 15 km. In this study, a simplified two-stream radiative transfer model is applied for microwave applications as a three-parameter equation and then used to retrieve the ice cloud water path (IWP) and ice particle effective diameter De. Since SSMIS is a conically scanning instrument, the retrieved IWP is less dependent on scan position and is a useful product for imaging atmospheric ice-phase clouds related to precipitation. Thus, IWP is also used to estimate surface rainfall rate through the same relationship derived previously and used in Advanced Microwave Sounding Unit (AMSU-B) and Microwave Humidity Sounder applications. The SSMIS-derived ice cloud products are compared with those from other microwave instruments on the MetOp-A satellite, and both agree well in their spatial distributions.

Corresponding author address: Fuzhong Weng, WWB Room 712, 5200 Auth Road, Camp Springs, MD 20746. E-mail: fuzhong.weng@noaa.gov

Abstract

The Special Sensor Microwave Imager/Sounder (SSMIS) aboard the Defense Meteorological Satellite Program F-16 spacecraft measures the Earth-emitted radiation at frequencies from 19 to 183 GHz. From its high-frequency channels at 91 and 150 GHz, cloud microphysical parameters can be observed at a spatial resolution of 15 km. In this study, a simplified two-stream radiative transfer model is applied for microwave applications as a three-parameter equation and then used to retrieve the ice cloud water path (IWP) and ice particle effective diameter De. Since SSMIS is a conically scanning instrument, the retrieved IWP is less dependent on scan position and is a useful product for imaging atmospheric ice-phase clouds related to precipitation. Thus, IWP is also used to estimate surface rainfall rate through the same relationship derived previously and used in Advanced Microwave Sounding Unit (AMSU-B) and Microwave Humidity Sounder applications. The SSMIS-derived ice cloud products are compared with those from other microwave instruments on the MetOp-A satellite, and both agree well in their spatial distributions.

Corresponding author address: Fuzhong Weng, WWB Room 712, 5200 Auth Road, Camp Springs, MD 20746. E-mail: fuzhong.weng@noaa.gov
Save