• Allen, L., F. Lindberg, and C. S. B. Grimmond, 2011: Global to city scale urban anthropogenic heat flux: Model and variability. Int. J. Climatol., 31, 19902005.

    • Search Google Scholar
    • Export Citation
  • Anderson, V., 2009: The exacerbation of anthropogenic heat fluxes as a function of interior climate controls and building envelope. M.S. thesis, Atmospheric Science Program, Indiana University, Bloomington, IN.

    • Search Google Scholar
    • Export Citation
  • Arnfield, A. J., 2003: Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol., 23, 126.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 2011: The integrated WRF/urban modeling system: Development, evaluation, and applications to urban environmental problems. Int. J. Climatol., 31, 273288.

    • Search Google Scholar
    • Export Citation
  • Christen, A., and R. Vogt, 2004: Energy and radiation balance of a central European city. Int. J. Climatol., 24, 13951421.

  • Cimorelli, A. J., and Coauthors, 2005: AERMOD: A dispersion model for industrial source applications. Part I: General model formulation and boundary layer characterization. J. Appl. Meteor., 44, 682693.

    • Search Google Scholar
    • Export Citation
  • Cleveland, W. S., 1981: LOWESS: A program for smoothing scatterplots by robust locally weighted regression. Amer. Stat., 35, 54.

  • Coutts, A. M., J. Beringer, and N. J. Tapper, 2007a: Characteristics influencing the variability of urban CO2 fluxes in Melbourne, Australia. Atmos. Environ., 41, 5162.

    • Search Google Scholar
    • Export Citation
  • Coutts, A. M., J. Beringer, and N. J. Tapper, 2007b: Impact of increasing urban density on local climate: Spatial and temporal variations in the surface energy balance in Melbourne, Australia. J. Appl. Meteor., 46, 477493.

    • Search Google Scholar
    • Export Citation
  • Flagg, D. D., and P. A. Taylor, 2011: Sensitivity of mesoscale model urban boundary layer meteorology to the scale of urban representation. Atmos. Chem. Phys., 11, 29512972.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., 1992: The suburban energy balance: Methodological considerations and results for a mid-latitude west coast city under winter and spring conditions.Int. J. Climatol., 12, 481497.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., 2006: Progress in measuring and observing the urban atmosphere. Theor. Appl. Climatol., 84, 322.

  • Grimmond, C. S. B., and T. R. Oke, 1991: An evapotranspiration-interception model for urban areas. Water Resour. Res., 27, 17391755.

  • Grimmond, C. S. B., and T. R. Oke, 1995: Comparison of heat fluxes from summertime observations in the suburbs of four North American cities. J. Appl. Meteor., 34, 873889.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and T. R. Oke, 1999: Aerodynamic properties of urban areas derived from analysis of surface form. J. Appl. Meteor., 38, 12611292.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and T. R. Oke, 2002: Turbulent heat fluxes in urban areas: Observations and a Local-Scale Urban Meteorological Parameterization Scheme (LUMPS). J. Appl. Meteor., 41, 792810.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., T. R. Oke, and H. A. Cleugh, 1993: The role of “rural” in comparisons of observed suburban-rural flux differences. Exchanges Processes at the Land Surface for a Range of Space and Time Scales: Proceedings of the Yokohama Symposium, IAHS Publ. 212, 165–174.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., C. Souch, H. Grant, and G. Heisler, 1994: Local scale energy and water exchanges in a Chicago neighbourhood. Chicago’s Urban Forest Ecosystem: Results of the Chicago Urban Forest Climate Project, USDA Forest Service Northeastern Forest Experiment Station General Tech. Rep. NE-186, 201 pp. [Available online at http://www.treesearch.fs.fed.us/pubs/4285.]

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., C. Souch, and M. Hubble, 1996: The influence of tree cover on summertime energy balance fluxes, San Gabriel Valley, Los Angeles. Climate Res., 6, 4557.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., J. A. Salmond, T. R. Oke, B. Offerle, and A. Lemonsu, 2004a: Flux and turbulence measurements at a densely built-up site in Marseille: Heat, mass (water and carbon dioxide) and momentum. J. Geophys. Res., 109, D24101, doi:10.1029/2004JD004936.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., H.-B. Su, B. Offerle, B. Crawford, S. Scott, S. Zhong, and C. Clements, 2004b: Variability of sensible heat fluxes in a suburban area of Oklahoma City. Preprints, Symp. on Planning, Nowcasting, and Forecasting in the Urban Zone, Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Seattle, WA, Amer. Meteor. Soc., J7.2. [Available online at http://ams.confex.com/ams/pdfpapers/67542.htm.]

    • Search Google Scholar
    • Export Citation
  • Grossman-Clarke, S., J. A. Zehnder, T. Loridan, and C. S. B. Grimmond, 2010: Contribution of land use changes to near-surface air temperatures during recent summer heat events in the Phoenix metropolitan area. J. Appl. Meteor. Climatol., 49, 16491664.

    • Search Google Scholar
    • Export Citation
  • Hinkley, D. V., 1988: Bootstrap methods (with discussion). J. Roy. Stat. Soc., 50B, 312337, 355–370.

  • Kanda, M., R. Moriwaki, M. Roth, and T. R. Oke, 2002: Area-averaged sensible heat flux and a new method to determine zero plane displacement length over an urban surface using scintillometry. Bound.-Layer Meteor., 105, 177193.

    • Search Google Scholar
    • Export Citation
  • King, T., and S. Grimmond, 1997: Transfer mechanisms over an urban surface for water vapor, sensible heat, and momentum. Preprints, 12th Symp. on Boundary Layers and Turbulence, Vancouver, BC, Canada, Amer. Meteor. Soc., 455–456.

    • Search Google Scholar
    • Export Citation
  • Kusaka, H., and F. Kimura, 2004: Thermal effects of urban canyon structure on the nocturnal heat island: Numerical experiment using a mesoscale model coupled with an urban canopy model. J. Appl. Meteor., 43, 18991910.

    • Search Google Scholar
    • Export Citation
  • Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Layer Meteor., 101, 329358.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-H., and Coauthors, 2011: Evaluation of urban surface parameterizations in the WRF model using measurements during the Texas Air Quality Study 2006 field campaign. Atmos. Chem. Phys., 11, 21272143.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., and K. Elder, 2006: A Meteorological Distribution System for High-Resolution Terrestrial Modeling (MicroMet). J. Hydrometeor., 7, 217234.

    • Search Google Scholar
    • Export Citation
  • Loridan, T., and C. S. B. Grimmond, 2011: Multi-site evaluation of an urban land-surface model: Intra-urban heterogeneity, seasonality and parameter complexity requirements. Quart. J. Roy. Meteor. Soc., doi: 10.1002/qj.963, in press.

    • Search Google Scholar
    • Export Citation
  • Loridan, T., and Coauthors, 2010: Trade-offs and responsiveness of the single-layer urban canopy parameterization in WRF: An offline evaluation using the MOSCEM optimization algorithm and field observations. Quart. J. Roy. Meteor. Soc., 136, 9971019.

    • Search Google Scholar
    • Export Citation
  • Loridan, T., C. S. B. Grimmond, B. Offerle, D. T. Young, T. E. L. Smith, L. Järvi, and F. Lindberg, 2011: Local-Scale Urban Meteorological Parameterization Scheme (LUMPS): Longwave radiation parameterization and seasonality related developments. J. Appl. Meteor. Climatol., 50, 185202.

    • Search Google Scholar
    • Export Citation
  • McCarthy, M. P., M. J. Best, and R. A. Betts, 2010: Climate change in cities due to global warming and urban effects. Geophys. Res. Lett., 37, L09705, doi:10.1029/2010GL042845.

    • Search Google Scholar
    • Export Citation
  • Melbourne Water, cited 2010; Melbourne Water home page. [Available online at http://www.melbournewater.com.au/.]

  • Moriwaki, R., and M. Kanda, 2004: Seasonal and diurnal fluxes of radiation, heat, water vapor, and carbon dioxide over a suburban area. J. Appl. Meteor., 43, 17001710.

    • Search Google Scholar
    • Export Citation
  • Moriwaki, R., M. Kanda, H. Senoo, A. Hagishima, and T. Kinouchi, 2008: Anthropogenic water vapor emissions in Tokyo. Water Resour. Res., 44, W11424, doi:10.1029/2007WR006624.

    • Search Google Scholar
    • Export Citation
  • Newton, T., 1999: Energy balance fluxes in a subtropical city: Miami, FL. M.S. thesis, Dept. of Geography, University of British Columbia, Vancouver, BC, Canada, 140 pp.

    • Search Google Scholar
    • Export Citation
  • Newton, T., T. R. Oke, C. S. B. Grimmond, and M. Roth, 2007: The suburban energy balance in Miami, Florida. Geogr. Ann., 89A, 331347.

    • Search Google Scholar
    • Export Citation
  • NLCD, cited 2010: Multi-Resolution Land Characteristics Consortium (MRLC). [Available online at http://www.epa.gov/mrlc/definitions.html.]

    • Search Google Scholar
    • Export Citation
  • Offerle, B., C. S. B. Grimmond, and T. R. Oke, 2003: Parameterization of net all-wave radiation for urban areas. J. Appl. Meteor., 42, 11571173.

    • Search Google Scholar
    • Export Citation
  • Offerle, B., P. Jonsson, I. Eliasson, and C. S. B. Grimmond, 2005: Urban modification of the surface energy balance in the West African Sahel: Ouagadougou, Burkina Faso. J. Climate, 18, 39833995.

    • Search Google Scholar
    • Export Citation
  • Offerle, B., C. S. B. Grimmond, K. Fortuniak, K. Klysic, and T. R. Oke, 2006: Temporal variations in heat fluxes over a central European city centre. Theor. Appl. Climatol., 84, 103116.

    • Search Google Scholar
    • Export Citation
  • Offerle, B., I. Eliasson, C. S. B. Grimmond, and B. Holmer, 2007: Surface heating in relation to air temperature, wind and turbulence in an urban street canyon. Bound.-Layer Meteor., 122, 273292.

    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1978: Boundary Layer Climates. Routledge, 435 pp.

  • Oke, T. R., 1988: The urban energy balance. Prog. Phys. Geogr., 12, 471508.

  • Oke, T. R., R. Spronken-Smith, E. Jauregui, and C. S. B. Grimmond, 1999: Recent energy balance observations in Mexico City. Atmos. Environ., 33, 39193930.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., G. B. Bonan, and J. Feddema, 2010: The effects of white roofs on urban temperature in a global climate model. Geophys. Res. Lett., 37, L03701, doi:10.1029/2009GL042194.

    • Search Google Scholar
    • Export Citation
  • Pérez, C., P. Jiménez, O. Jorba, M. Sicard, and J. M. Baldasano, 2006: Influence of the PBL scheme on high-resolution photochemical simulations in an urban coastal area over the Western Mediterranean. Atmos. Environ., 40, 52745297.

    • Search Google Scholar
    • Export Citation
  • Pigeon, G., D. Legain, P. Durand, and V. Masson, 2007: Anthropogenic heat releases in an old European agglomeration (Toulouse, France). Int. J. Climatol., 27, 19691981.

    • Search Google Scholar
    • Export Citation
  • Rotach, M. W., S.-E. Gryning, E. Batchvarova, A. Christen, and R. Vogt, 2004: Pollutant dispersion close to an urban surface—The BUBBLE Tracer Experiment. Meteor. Atmos. Phys., 87, 3956.

    • Search Google Scholar
    • Export Citation
  • Sailor, D. J., 2011: A review of methods for estimating anthropogenic heat and moisture emissions in the urban environment. Int. J. Climatol., 31, 189199.

    • Search Google Scholar
    • Export Citation
  • Soret, A., P. Jiménez, and J. M. Baldasano, 2011: Comprehensive air quality planning for the Barcelona Metropolitan Area through traffic management. Atmos. Pollut. Res., 2, 255266.

    • Search Google Scholar
    • Export Citation
  • Stewart, I. D., and T. R. Oke, 2009: Newly developed “thermal climate zones” for defining and measuring urban heat island “magnitude” in the canopy layer. Preprints, Eighth Symp. on the Urban Environment, Phoenix, AZ, Amer. Meteor. Soc., J8.2A. [Available online at http://ams.confex.com/ams/pdfpapers/150476.pdf.]

    • Search Google Scholar
    • Export Citation
  • Vesala, T., and Coauthors, 2008: Surface–atmosphere interactions over complex urban terrain in Helsinki, Finland. Tellus, 60B, 188199.

    • Search Google Scholar
    • Export Citation
  • Yaghoobian, N., J. Kleissl, and E. S. Krayenhoff, 2010: Modeling the thermal effects of artificial turf on the urban environment. J. Appl. Meteor. Climatol., 49, 332345.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 224 179 17
PDF Downloads 159 127 14

Characterization of Energy Flux Partitioning in Urban Environments: Links with Surface Seasonal Properties

View More View Less
  • 1 Environmental Monitoring and Modelling Group, Department of Geography, King’s College London, London, United Kingdom
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A better understanding of links between the properties of the urban environment and the exchange to the atmosphere is central to a wide range of applications. The numerous measurements of surface energy balance data in urban areas enable intercomparison of observed fluxes from distinct environments. This study analyzes a large database in two new ways. First, instead of normalizing fluxes using net all-wave radiation only the incoming radiative fluxes are used, to remove the surface attributes from the denominator. Second, because data are now available year-round, indices are developed to characterize the fraction of the surface (built; vegetation) actively engaged in energy exchanges. These account for shading patterns within city streets and seasonal changes in vegetation phenology; their impact on the partitioning of the incoming radiation is analyzed. Data from 19 sites in North America, Europe, Africa, and Asia (including 6-yr-long observation campaigns) are used to derive generalized surface–flux relations. The midday-period outgoing radiative fraction decreases with an increasing total active surface index, the stored energy fraction increases with an active built index, and the latent heat fraction increases with an active vegetated index. Parameterizations of these energy exchange ratios as a function of the surface indices [i.e., the Flux Ratio–Active Index Surface Exchange (FRAISE) scheme] are developed. These are used to define four urban zones that characterize energy partitioning on the basis of their active surface indices. An independent evaluation of FRAISE, using three additional sites from the Basel Urban Boundary Layer Experiment (BUBBLE), yields accurate predictions of the midday flux partitioning at each location.

Corresponding author address: Thomas Loridan, Environmental Monitoring and Modelling Group, Dept. of Geography, King’s College London, London WC2R 2LS, United Kingdom. E-mail: thomas.loridan@gmail.com

Abstract

A better understanding of links between the properties of the urban environment and the exchange to the atmosphere is central to a wide range of applications. The numerous measurements of surface energy balance data in urban areas enable intercomparison of observed fluxes from distinct environments. This study analyzes a large database in two new ways. First, instead of normalizing fluxes using net all-wave radiation only the incoming radiative fluxes are used, to remove the surface attributes from the denominator. Second, because data are now available year-round, indices are developed to characterize the fraction of the surface (built; vegetation) actively engaged in energy exchanges. These account for shading patterns within city streets and seasonal changes in vegetation phenology; their impact on the partitioning of the incoming radiation is analyzed. Data from 19 sites in North America, Europe, Africa, and Asia (including 6-yr-long observation campaigns) are used to derive generalized surface–flux relations. The midday-period outgoing radiative fraction decreases with an increasing total active surface index, the stored energy fraction increases with an active built index, and the latent heat fraction increases with an active vegetated index. Parameterizations of these energy exchange ratios as a function of the surface indices [i.e., the Flux Ratio–Active Index Surface Exchange (FRAISE) scheme] are developed. These are used to define four urban zones that characterize energy partitioning on the basis of their active surface indices. An independent evaluation of FRAISE, using three additional sites from the Basel Urban Boundary Layer Experiment (BUBBLE), yields accurate predictions of the midday flux partitioning at each location.

Corresponding author address: Thomas Loridan, Environmental Monitoring and Modelling Group, Dept. of Geography, King’s College London, London WC2R 2LS, United Kingdom. E-mail: thomas.loridan@gmail.com
Save