• Angevine, W. M., J. E. Hare, C. W. Fairall, D. E. Wolfe, R. J. Hill, W. A. Brewer, and A. B. White, 2006: Structure and formation of the highly stable marine boundary layer over the Gulf of Maine. J. Geophys. Res., 111, D23S22, doi:10.1029/2006JD007465.

    • Search Google Scholar
    • Export Citation
  • Banakh, V. A., I. N. Smalikho, Y. L. Pichugina, and W. A. Brewer, 2010: Representativeness of measurements of the dissipation rate of turbulence energy by scanning Doppler lidar. Atmos. Oceanic Opt., 23 (1), 4854.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., R. K. Newsom, J. K. Lundquist, Y. L. Pichugina, R. L. Coulter, and L. Mahrt, 2002: Nocturnal low-level jet characteristics over Kansas during CASES-99. Bound.-Layer Meteor., 105, 221252.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Y. L. Pichugina, and R. K. Newsom, 2003: Relationship between low-level jet properties and turbulence kinetic energy in the nocturnal stable boundary layer. J. Atmos. Sci., 60, 25492555.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Y. L. Pichugina, and W. A. Brewer, 2006: Turbulent velocity-variance profiles in the stable boundary layer generated by a nocturnal low-level jet. J. Atmos. Sci., 63, 27002719.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and R. Wexler, 1968: The determination of kinematic properties of a wind field using Doppler radar. J. Appl. Meteor., 7, 105113.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., and D. R. Novak, 2010: The New York bight jet: Climatology and dynamical evolution. Mon. Wea. Rev., 138, 23852404.

  • Darby, L. S., and Coauthors, 2002: Vertical variations in O3 concentrations before and after a gust front passage. J. Geophys. Res., 107, 4321, doi:10.1029/2001JD000996.

    • Search Google Scholar
    • Export Citation
  • Darby, L. S., and Coauthors, 2007: Ozone differences between near-coastal and offshore sites in New England: Role of meteorology. J. Geophys. Res., 112, D16S91, doi:10.1029/2007JD008446.

    • Search Google Scholar
    • Export Citation
  • Drobinski, P., P. Carlotti, R. K. Newsom, R. M. Banta, R. C. Foster, and J.-L. Redelsperger, 2004: The structure of the near-neutral atmospheric surface layer. J. Atmos. Sci., 61, 699714.

    • Search Google Scholar
    • Export Citation
  • Emeis, S., M. Harris, and R. M. Banta, 2007: Boundary-layer anemometry by optical remote sensing for wind energy applications. Meteor. Z., 16, 337347.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., and Coauthors, 2006: Coastal effects on turbulent bulk transfer coefficients and ozone deposition velocity in ICARTT. J. Geophys. Res., 111, D23S20, doi:1029/2006JD007597.

    • Search Google Scholar
    • Export Citation
  • Grund, C. J., R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickmann, 2001: High-resolution Doppler lidar for boundary layer and cloud research. J. Atmos. Oceanic Technol., 18, 376393.

    • Search Google Scholar
    • Export Citation
  • Hall, F. F., R. M. Huffaker, R. M. Hardesty, M. E. Jackson, T. R. Lawrence, M. J. Post, R. A. Richter, and B. F. Weber, 1984: Wind measurement accuracy of the NOAA pulsed infrared Doppler lidar. Appl. Opt., 23, 25032506.

    • Search Google Scholar
    • Export Citation
  • Käsler, Y., S. Rahm, R. Simmet, and M. Kuhn, 2010: Wake measurements of a multi-MW wind turbine with coherent long-range pulsed Doppler wind lidar. J. Atmos. Oceanic Technol., 27, 15291532.

    • Search Google Scholar
    • Export Citation
  • Kelley, N., B. J. Jonkman, G. N. Scott, and Y. L. Pichugina, 2007: Comparing pulsed Doppler LIDAR with SODAR and direct measurements for wind assessment. WindPower 2007 Conf., Los Angeles, CA, American Wind Energy Association, NREL/CP-500-417.

    • Search Google Scholar
    • Export Citation
  • Kindler, D., A. Oldroyd, A. MacAskill, and D. Finch, 2007: An eight month test campaign of the Qinetiq ZephIR system: Preliminary results. Meteor. Z., 16, 479489.

    • Search Google Scholar
    • Export Citation
  • Lhermitte, R., and D. Atlas, 1961: Precipitation motion by pulse Doppler radar. Preprints, Ninth Conf. on Radar Meteorology, Kansas City, MO, Amer. Meteor. Soc., 218–223.

    • Search Google Scholar
    • Export Citation
  • Linsday, J., 2010: Cape Wind offshore wind farm gets OK. Nashua Telegraph, 29 April 2010.

  • Mahrt, L., 1999: Stratified atmospheric boundary layers. Bound.-Layer Meteor., 90, 375396.

  • Mann, J., A. Peña, F. Bingöl, R. Wagner, and M. S. Courtney, 2010: Lidar scanning of momentum flux in and above the atmospheric surface layer. J. Atmos. Oceanic Technol., 27, 959976.

    • Search Google Scholar
    • Export Citation
  • Musial, W., and S. Butterfield, 2004: Future for offshore wind energy in the United States. Preprints, Energy Ocean 2004, Palm Beach, FL, Energy Ocean International (Conf. Paper NREL/CP-500-36313), 16 pp. [Available online at http://www.nrel.gov/docs/fy04osti/36313.pdf.]

    • Search Google Scholar
    • Export Citation
  • Musial, W., and B. Ram, 2010: Large-scale offshore wind power in the United States: Assessment of opportunities and barriers. NREL Tech. Paper NREL/TP-500-40745, 221 pp. [Available online at http://www.nrel.gov/wind/pdfs/40745.pdf.]

    • Search Google Scholar
    • Export Citation
  • Newsom, R. K., and R. M. Banta, 2003: Shear-flow instability in the stable nocturnal boundary layer as observed by Doppler lidar during CASES-99. J. Atmos. Sci., 60, 1633.

    • Search Google Scholar
    • Export Citation
  • Peña, A., C. B. Hasager, S.-E. Gryning, M. Courtney, I. Antoniou, and T. Mikkelsen, 2008: Measurements and modelling of the wind speed profile in the marine atmospheric boundary layer. Bound.-Layer Meteor., 129, 479495.

    • Search Google Scholar
    • Export Citation
  • Peña, A., C. B. Hasager, S.-E. Gryning, M. Courtney, I. Antoniou, and T. Mikkelsen, 2009: Offshore wind profiling using light detection and ranging measurements. Wind Energy, 12, 105124.

    • Search Google Scholar
    • Export Citation
  • Pichugina, Y. L., and R. M. Banta, 2010: Stable boundary-layer depth from high-resolution measurements of the mean wind profile. J. Appl. Meteor. Climatol., 49, 2035.

    • Search Google Scholar
    • Export Citation
  • Pichugina, Y. L., R. M. Banta, W. A. Brewer, B. Jonkman, R. K. Newsom, S. C. Tucker, and W. A. Brewer, 2008: Horizontal-velocity and variance measurements in the stable boundary layer using Doppler lidar: Sensitivity to averaging procedures. J. Atmos. Oceanic Technol., 25, 13071327.

    • Search Google Scholar
    • Export Citation
  • Pichugina, Y. L., R. M. Banta, W. A. Brewer, R. M. Hardesty, and C. J. Senff, 2010: Doppler lidar measurements of wind flow characteristics over flat terrain and over ocean. Int. Symp. for the Advancement of Boundary Layer Remote Sensing, Paris, France, International Society of Acoustic Remote Sensing of the Atmosphere and Oceans, O-Win-03.

    • Search Google Scholar
    • Export Citation
  • Rothermel, J., and Coauthors, 1998: The Multi-Center Airborne Coherent Atmospheric Wind Sensor. Bull. Amer. Meteor. Soc., 79, 581599.

    • Search Google Scholar
    • Export Citation
  • Schreck, S., J. K. Lundquist, and W. Shaw, 2008: Research needs for wind resource characterization. NREL Rep. TP-500-43521, 116 pp.

  • Smedman, A.-S., M. Tjernström, and U. Högström, 1993: Analysis of the turbulence structure of a marine low-level jet. Bound.-Layer Meteor., 66, 105126.

    • Search Google Scholar
    • Export Citation
  • Smedman, A.-S., H. Bergström, and B. Grisogano, 1997: Evolution of stable internal boundary layers over a cold sea. J. Geophys. Res., 102, 10911099.

    • Search Google Scholar
    • Export Citation
  • Smith, D. A., M. Harris, A. S. Coffey, T. Mikkelsen, H. E. Jørgensen, J. Mann, and R. Danielian, 2006: Wind lidar evaluation at the Danish wind test site in Høvsøre. Wind Energy, 9, 8793.

    • Search Google Scholar
    • Export Citation
  • Sun, J., L. Mahrt, R. M. Banta, and Y. L. Pichugina, 2012: Turbulence regimes and turbulence intermittency in the stable boundary layer during CASES99. J. Atmos. Sci., 69, 338351.

    • Search Google Scholar
    • Export Citation
  • Tucker, S. C., W. A. Brewer, R. M. Banta, C. J. Senff, S. P. Sandberg, D. Law, A. M. Weickmann, and R. M. Hardesty, 2009: Doppler lidar estimation of mixing height using turbulence, shear, and aerosol profiles. J. Atmos. Oceanic Technol., 26, 673688.

    • Search Google Scholar
    • Export Citation
  • Tucker, S. C., and Coauthors, 2010: Relationships of coastal nocturnal boundary layer winds and turbulence to Houston ozone concentrations during TexAQS 2006. J. Geophys. Res., 115, D10304, doi:10.1029/2009JD013169.

    • Search Google Scholar
    • Export Citation
  • White, A. B., and Coauthors, 2007: Comparing the impact of meteorological variability on surface ozone during the NEAQS (2002) and ICARTT (2004) field campaigns. J. Geophys. Res., 112, D10S14, doi:10.1029/2006JD007590.

    • Search Google Scholar
    • Export Citation
  • Wolfe, D. E., and Coauthors, 2007: Shipboard multi-sensor merged wind profiles from New England Air Quality Study 2004. J. Geophys. Res., 112, D10S15, doi:10.1029/2006JD007344.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V. O., and T. Janjić, 2005: Twenty-four-hour observations of the marine boundary layer using shipborne NOAA high-resolution Doppler lidar. J. Appl. Meteor., 44, 17231744.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V. O., M. Randall, W. A. Brewer, and R. M. Hardesty, 2000: 2 μm Doppler lidar transmitter with high frequency stability and low chirp. Opt. Lett., 25, 12281230.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 523 408 41
PDF Downloads 466 375 40

Doppler Lidar–Based Wind-Profile Measurement System for Offshore Wind-Energy and Other Marine Boundary Layer Applications

View More View Less
  • 1 Cooperative Institute for Research in Environmental Sciences, and NOAA/Earth System Research Laboratory, Boulder, Colorado
  • | 2 NOAA/Earth System Research Laboratory, Boulder, Colorado
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Accurate measurement of wind speed profiles aloft in the marine boundary layer is a difficult challenge. The development of offshore wind energy requires accurate information on wind speeds above the surface at least at the levels occupied by turbine blades. Few measured data are available at these heights, and the temporal and spatial behavior of near-surface winds is often unrepresentative of that at the required heights. As a consequence, numerical model data, another potential source of information, are essentially unverified at these levels of the atmosphere. In this paper, a motion-compensated, high-resolution Doppler lidar–based wind measurement system that is capable of providing needed information on offshore winds at several heights is described. The system has been evaluated and verified in several ways. A sampling of data from the 2004 New England Air Quality Study shows the kind of analyses and information available. Examples include time–height cross sections, time series, profiles, and distributions of quantities such as winds and shear. These analyses show that there is strong spatial and temporal variability associated with the wind field in the marine boundary layer. Winds near the coast show diurnal variations, and frequent occurrences of low-level jets are evident, especially during nocturnal periods. Persistent patterns of spatial variability in the flow field that are due to coastal irregularities should be of particular concern for wind-energy planning, because they affect the representativeness of fixed-location measurements and imply that some areas would be favored for wind-energy production whereas others would not.

Corresponding author address: Yelena L. Pichugina, University of Colorado at Boulder, Cooperative Institute for Research in Environmental Sciences, 385 Broadway, Boulder, CO 80305-3337. E-mail: yelena.pichugina@noaa.gov

Abstract

Accurate measurement of wind speed profiles aloft in the marine boundary layer is a difficult challenge. The development of offshore wind energy requires accurate information on wind speeds above the surface at least at the levels occupied by turbine blades. Few measured data are available at these heights, and the temporal and spatial behavior of near-surface winds is often unrepresentative of that at the required heights. As a consequence, numerical model data, another potential source of information, are essentially unverified at these levels of the atmosphere. In this paper, a motion-compensated, high-resolution Doppler lidar–based wind measurement system that is capable of providing needed information on offshore winds at several heights is described. The system has been evaluated and verified in several ways. A sampling of data from the 2004 New England Air Quality Study shows the kind of analyses and information available. Examples include time–height cross sections, time series, profiles, and distributions of quantities such as winds and shear. These analyses show that there is strong spatial and temporal variability associated with the wind field in the marine boundary layer. Winds near the coast show diurnal variations, and frequent occurrences of low-level jets are evident, especially during nocturnal periods. Persistent patterns of spatial variability in the flow field that are due to coastal irregularities should be of particular concern for wind-energy planning, because they affect the representativeness of fixed-location measurements and imply that some areas would be favored for wind-energy production whereas others would not.

Corresponding author address: Yelena L. Pichugina, University of Colorado at Boulder, Cooperative Institute for Research in Environmental Sciences, 385 Broadway, Boulder, CO 80305-3337. E-mail: yelena.pichugina@noaa.gov
Save