• Barthazy, E., S. Göke, R. Schefold, and D. Högl, 2004: An optical array instrument for shape and fall velocity measurements of hydrometeors. J. Atmos. Oceanic Technol., 21, 14001416.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., G. Zhang, and J. Vivekanandan, 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteor., 41, 674685.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., G. Zhang, and J. Vivekanandan, 2004: Drop size distribution retrieval with polarimetric radar: Model and application. J. Appl. Meteor., 43, 461475.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., G.-J. Huang, V. Chandrasekar, and E. Gorgucci, 2002: A methodology for estimating the parameters of a gamma raindrop size distribution model from polarimetric radar data: Application to a squall-line event from the TRMM/Brazil campaign. J. Atmos. Oceanic Technol., 19, 633645.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., V. Chandrasekar, J. Hubbert, E. Gorgucci, W. L. Randeu, and M. Schoenhuber, 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60, 354365.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., M. Thurai, and D. A. Brunkow, 2008: Measurements and inferences of raindrop canting angles. Electron. Lett., 44, 14251426.

    • Search Google Scholar
    • Export Citation
  • Campos, E., and I. Zawadzki, 2000: Instrumental uncertainties in Z–R relations. J. Appl. Meteor., 39, 10881102.

  • Chandrasekar, V., and V. N. Bringi, 1987: Simulation of radar reflectivity and surface measurements of rainfall. J. Atmos. Oceanic Technol., 4, 464478.

    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., A. Hou, E. Smith, V. Bringi, S. Rutledge, E. Gorgucci, W. Petersen, and G. Skofronick-Jackson, 2008: Potential role of dual-polarization radar in the validation of satellite precipitation measurements. Bull. Amer. Meteor. Soc., 89, 11271145.

    • Search Google Scholar
    • Export Citation
  • Gorgucci, E., V. Chandrasekar, V. N. Bringi, and G. Scarchilli, 2002: Estimation of raindrop size distribution parameters from polarimetric radar measurements. J. Atmos. Sci., 59, 23732384.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., G. Skofronick-Jackson, C. D. Kummerow, and J. M. Shepherd, 2008: Global precipitation measurement. Precipitation: Advances in Measurement, Estimation, and Prediction, S. Michaelides, Ed., Springer, 131–170.

    • Search Google Scholar
    • Export Citation
  • Illingworth, A., and T. Blackman, 2002: The need to represent raindrop size spectra as normalized gamma distributions for the interpretation of polarization radar observations. J. Appl. Meteor., 41, 286297.

    • Search Google Scholar
    • Export Citation
  • Joss, J., and A. Waldvogel, 1967: A raindrop spectrograph with automatic analysis. Pure Appl. Geophys., 68, 240246.

  • Joss, J., and A. Waldvogel, 1969: Raindrop size distribution and sampling size errors. J. Atmos. Sci., 26, 566569.

  • Kedem, B., and L. Chiu, 1987: On the lognormality of rain rate. Proc. Natl. Acad. Sci. USA, 84, 901905.

  • Kidd, C., and P. Joe, 2007: Importance, identification and measurement of light precipitation at mid- to high-latitudes. Proc. Joint EUMETSAT Meteorological Satellite Conf. and 15th Satellite Meteorology and Oceanography Conf., Amsterdam, Netherlands, EUMETSAT and Amer. Meteor. Soc., 6 pp. [Available online at http://www.eumetsat.int/home/Main/AboutEUMETSAT/Publications/ConferenceandWorkshopProceedings/2007/groups/cps/­documents/document/pdf_conf_p50_s8_04_kidd_p.pdf.]

    • Search Google Scholar
    • Export Citation
  • Kuo, K.-S., E. A. Smith, Z. Haddad, E. Im, T. Iguchi, and A. Mugnai, 2004: Mathematical–physical framework for retrieval of rain DSD properties from dual-frequency Ku–Ka-band satellite radar. J. Atmos. Sci., 61, 23492369.

    • Search Google Scholar
    • Export Citation
  • Mardiana, R., T. Iguchi, and N. Takahashi, 2004: A dual-frequency rain profiling method without the use of a surface reference technique. IEEE Trans. Geosci. Remote Sens., 42, 22142225.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and W. M. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165166.

  • Marshall, J. S., R. C. Langille, and W. M. Palmer, 1947: Measurement of rainfall by radar. J. Meteor., 4, 186192.

  • Marzuki, M., W. Randeu, M. Schönhuber, V. Bringi, T. Kozu, and T. Shimomai, 2010: Raindrop size distribution parameters of distrometer data with different bin sizes. IEEE Trans. Geosci. Remote Sens., 48, 30753080.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., A. J. Heymsfield, and Z. Wang, 2005: Dual-frequency radar ratio of nonspherical atmospheric hydrometeors. Geophys. Res. Lett., 32, L13816, doi:10.1029/2005GL023210.

    • Search Google Scholar
    • Export Citation
  • Meneghini, R., and L. Liao, 2007: On the equivalence of dual-wavelength and dual-polarization equations for estimation of the raindrop size distribution. J. Atmos. Oceanic Technol., 24, 806820.

    • Search Google Scholar
    • Export Citation
  • Meneghini, R., T. Kozu, H. Kumagai, and W. C. Boncyk, 1992: A study of rain estimation methods from space using dual-wavelength radar measurements at near-nadir incidence over ocean. J. Atmos. Oceanic Technol., 9, 364382.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M., 2000: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt., 39, 10261031.

    • Search Google Scholar
    • Export Citation
  • Moisseev, D. N., and V. Chandrasekar, 2007: Examination of the μλ relation suggested for drop size distribution parameters. J. Atmos. Oceanic Technol., 24, 847855.

    • Search Google Scholar
    • Export Citation
  • Ray, P. S., 1972: Broadband complex refractive indices of ice and water. Appl. Opt., 11, 18361844.

  • Ryzhkov, A. V., S. E. Giangrande, and T. J. Schuur, 2005: Rainfall estimation with a polarimetric prototype of WSR-88D. J. Appl. Meteor., 44, 502515.

    • Search Google Scholar
    • Export Citation
  • Sachidananda, M., and D. Zrnic, 1986: Differential propagation phase shift and rainfall rate estimation. Radio Sci., 21, 235247.

  • Satoh, S., and Coauthors, 2004: Development of spaceborne dual-frequency precipitation radar for the Global Precipitation Measurement. Proc. 24th Int. Symp. on Space Technology and Science, Miyazaki City, Japan, ISTS, 6 pp. [Available online at http://okinawa.nict.go.jp/satoh/gpm/ISTS2004-n-06_Satoh.pdf.]

    • Search Google Scholar
    • Export Citation
  • Sekhon, R. S., and R. C. Srivastava, 1971: Doppler radar observations of drop-size distributions in a thunderstorm. J. Atmos. Sci., 28, 983994.

    • Search Google Scholar
    • Export Citation
  • Seliga, T. A., and V. N. Bringi, 1976: Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteor., 15, 6976.

    • Search Google Scholar
    • Export Citation
  • Seliga, T. A., and V. N. Bringi, 1978: Differential reflectivity and differential phase shift: Applications in radar meteorology. Radio Sci., 13, 271275.

    • Search Google Scholar
    • Export Citation
  • Sheppard, B. E., and P. I. Joe, 1994: Comparison of raindrop size distribution measurements by a Joss–Waldvogel disdrometer, a PMS 2DG spectrometer, and a POSS Doppler radar. J. Atmos. Oceanic Technol., 11, 874887.

    • Search Google Scholar
    • Export Citation
  • Silverman, B. W., 1986: Density Estimation for Statistics and Data Analysis. Chapman and Hall/CRC, 175 pp.

  • Smith, P., and D. Kliche, 2005: The bias in moment estimators for parameters of drop size distribution functions: Sampling from exponential distributions. J. Appl. Meteor., 44, 11951205.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2008: CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res., 113, D00A18, doi:10.1029/2008JD009982.

    • Search Google Scholar
    • Export Citation
  • Testud, J., S. Oury, R. Black, P. Amayenc, and X. Dou, 2001: The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor., 40, 11181140.

    • Search Google Scholar
    • Export Citation
  • Thurai, M., G. J. Huang, V. N. Bringi, W. L. Randeu, and M. Schönhuber, 2007: Drop shapes, model comparisons, and calculations of polarimetric radar parameters in rain. J. Atmos. Oceanic Technol., 24, 10191032.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., D. B. Wolff, K. R. Wolff, and P. Bashor, 2003: Rain gauge and disdrometer measurements during the Keys Area Microphysics Project (KAMP). J. Atmos. Oceanic Technol., 20, 14601477.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., P. G. Bashor, and K. R. Wolff, 2005: Error characteristics of rainfall measurements by collocated Joss–Waldvogel disdrometers. J. Atmos. Oceanic Technol., 22, 513527.

    • Search Google Scholar
    • Export Citation
  • Willis, P. T., 1984: Functional fits to some observed drop size distributions and parameterization of rain. J. Atmos. Sci., 41, 16481661.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 133 109 10
PDF Downloads 92 78 9

A Climatology of Disdrometer Measurements of Rainfall in Finland over Five Years with Implications for Global Radar Observations

View More View Less
  • 1 Finnish Meteorological Institute, Helsinki, and Department of Applied Physics, Aalto University, Espoo, Finland
  • | 2 Department of Physics, University of Helsinki, Helsinki, Finland
  • | 3 NASA Marshall Space Flight Center, Huntsville, Alabama
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

To improve the understanding of high-latitude rain microphysics and its implications for the remote sensing of rainfall by ground-based and spaceborne radars, raindrop size measurements have been analyzed that were collected over five years with a Joss–Waldvogel disdrometer located in Järvenpää, Finland. The analysis shows that the regional climate is characterized by light rain and small drop size with narrow size distributions and that the mutual relations of drop size distribution parameters differ from those reported at lower latitudes. Radar parameters computed from the distributions demonstrate that the high latitudes are a challenging target for weather radar observations, particularly those employing polarimetric and dual-frequency techniques. Nevertheless, the findings imply that polarimetric ground radars can produce reliable “ground truth” estimates for space observations and identify dual-frequency radars utilizing a W-band channel as promising tools for observing rainfall in the high-latitude climate.

Current affiliation: NASA Goddard Space Flight Center/Wallops Flight Facility, Wallops Island, Virginia.

Corresponding author address: Jussi Leinonen, Earth Observation, Finnish Meteorological Institute, P.O. Box 503, FIN-00101, Helsinki, Finland. E-mail: jussi.leinonen@fmi.fi

Abstract

To improve the understanding of high-latitude rain microphysics and its implications for the remote sensing of rainfall by ground-based and spaceborne radars, raindrop size measurements have been analyzed that were collected over five years with a Joss–Waldvogel disdrometer located in Järvenpää, Finland. The analysis shows that the regional climate is characterized by light rain and small drop size with narrow size distributions and that the mutual relations of drop size distribution parameters differ from those reported at lower latitudes. Radar parameters computed from the distributions demonstrate that the high latitudes are a challenging target for weather radar observations, particularly those employing polarimetric and dual-frequency techniques. Nevertheless, the findings imply that polarimetric ground radars can produce reliable “ground truth” estimates for space observations and identify dual-frequency radars utilizing a W-band channel as promising tools for observing rainfall in the high-latitude climate.

Current affiliation: NASA Goddard Space Flight Center/Wallops Flight Facility, Wallops Island, Virginia.

Corresponding author address: Jussi Leinonen, Earth Observation, Finnish Meteorological Institute, P.O. Box 503, FIN-00101, Helsinki, Finland. E-mail: jussi.leinonen@fmi.fi
Save