• Arnfield, A. J., 2003: Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol., 23, 126.

    • Search Google Scholar
    • Export Citation
  • Borden, K. A., , and S. L. Cutter, 2008: Spatial patterns of natural hazards mortality in the United States. Int. J. Health Geogr., 7, 64, doi:10.1186/1476-072x-7-64.

    • Search Google Scholar
    • Export Citation
  • Chen, F., , and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 2011: The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems. Int. J. Climatol., 31, 273288.

    • Search Google Scholar
    • Export Citation
  • Chen, L. X., , W. Q. Zhu, , X. J. Zhou, , and Z. J. Zhou, 2003: Characteristics of the heat island effect in Shanghai and its possible mechanism. Adv. Atmos. Sci., 20, 9911001.

    • Search Google Scholar
    • Export Citation
  • Chevan, A., , and M. Sutherland, 1991: Hierarchical partitioning. Amer. Stat., 45, 9096.

  • Chou, M. D., , M. J. Suarez, , C. H. Ho, , M. M. H. Yan, , and K. T. Lee, 1998: Parameterizations for cloud overlapping and shortwave single-scattering properties for use in general circulation and cloud ensemble models. J. Climate, 11, 202214.

    • Search Google Scholar
    • Export Citation
  • Chow, W. T. L., , and B. M. Svoma, 2011: Analyses of nocturnal temperature cooling-rate response to historical local-scale urban land-use/land cover change. J. Appl. Meteor. Climatol., 50, 18721883.

    • Search Google Scholar
    • Export Citation
  • de Foy, B., and Coauthors, 2005: Mexico City basin wind circulation during the MCMA-2003 field campaign. Atmos. Chem. Phys., 5, 22672288.

    • Search Google Scholar
    • Export Citation
  • de Foy, B., , L. T. Molina, , and M. J. Molina, 2006: Satellite-derived land surface parameters for mesoscale modelling of the Mexico City basin. Atmos. Chem. Phys., 6, 13151330.

    • Search Google Scholar
    • Export Citation
  • de Foy, B., and Coauthors, 2008: Basin-scale wind transport during the MILAGRO field campaign and comparison to climatology using cluster analysis. Atmos. Chem. Phys., 8, 12091224.

    • Search Google Scholar
    • Export Citation
  • de Foy, B., , M. Zavala, , N. Bei, , and L. T. Molina, 2009: Evaluation of WRF mesoscale simulations and particle trajectory analysis for the MILAGRO field campaign. Atmos. Chem. Phys., 9, 44194438.

    • Search Google Scholar
    • Export Citation
  • Fast, J. D., , and S. Y. Zhong, 1998: Meteorological factors associated with inhomogeneous ozone concentrations within the Mexico City basin. J. Geophys. Res., 103, 18 92718 946.

    • Search Google Scholar
    • Export Citation
  • Fast, J. D., and Coauthors, 2007: A meteorological overview of the MILAGRO field campaigns. Atmos. Chem. Phys., 7, 22332257.

  • Gallo, K. G. K., , R. Hale, , D. Tarpley, , and Y. Y. Yu, 2011: Evaluation of the relationship between air and land surface temperature under clear- and cloudy-sky conditions. J. Appl. Meteor. Climatol., 50, 767775.

    • Search Google Scholar
    • Export Citation
  • Ghulam, A., , Q. M. Qin, , T. Teyip, , and Z. L. Li, 2007: Modified perpendicular drought index (MPDI): A real-time drought monitoring method. J. Photogramm. Remote Sens., 62, 150164.

    • Search Google Scholar
    • Export Citation
  • Grossman-Clarke, S., , J. A. Zehnder, , W. L. Stefanov, , Y. B. Liu, , and M. A. Zoldak, 2005: Urban modifications in a mesoscale meteorological model and the effects on near-surface variables in an arid metropolitan region. J. Appl. Meteor., 44, 12811297.

    • Search Google Scholar
    • Export Citation
  • Grossman-Clarke, S., , J. A. Zehnder, , T. Loridan, , and C. S. B. Grimmond, 2010: Contribution of land use changes to near-surface air temperatures during recent summer extreme heat events in the Phoenix metropolitan area. J. Appl. Meteor. Climatol., 49, 16491664.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., , and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor., 42, 129151.

  • Hong, S.-Y., , Y. Noh, , and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341.

    • Search Google Scholar
    • Export Citation
  • Hung, T., , D. Uchihama, , S. Ochi, , and Y. Yasuoka, 2006: Assessment with satellite data of the urban heat island effects in Asian mega cities. Int. J. Appl. Earth Obs., 8, 3448.

    • Search Google Scholar
    • Export Citation
  • Imhoff, M. L., , P. Zhang, , R. E. Wolfe, , and L. Bounoua, 2010: Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens. Environ., 114, 504513.

    • Search Google Scholar
    • Export Citation
  • Jáuregui, E., 1997: Heat island development in Mexico City. Atmos. Environ., 31, 38213831.

  • Jazcilevich, A., , V. Fuentes, , E. Jáuregui, , and E. Luna, 2000: Simulated urban climate response to historical land use modification in the Basin of Mexico. Climatic Change, 44, 515536.

    • Search Google Scholar
    • Export Citation
  • Jazcilevich, A., , A. R. Garcia, , and L. G. Ruiz-Suarez, 2002: A modeling study of air pollution modulation through land-use change in the Valley of Mexico. Atmos. Environ., 36, 22972307.

    • Search Google Scholar
    • Export Citation
  • Jiang, Z., , A. Huete, , J. Chen, , Y. Chen, , J. Li, , G. Yan, , and X. Zhang, 2006: Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sens. Environ., 101, 366378.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181.

  • Kalnay, E., , M. Kanamitsu, , and W. E. Baker, 1990: Global numerical weather prediction at the National Meteorological Center. Bull. Amer. Meteor. Soc., 71, 14101428.

    • Search Google Scholar
    • Export Citation
  • Krayenhoff, E. S., , and J. A. Voogt, 2010: Impacts of urban albedo increase on local air temperature at daily–annual time scales: Model results and synthesis of previous work. J. Appl. Meteor. Climatol., 49, 16341648.

    • Search Google Scholar
    • Export Citation
  • Kusaka, H., , and F. Kimura, 2004: Thermal effects of urban canyon structure on the nocturnal heat island: Numerical experiment using a mesoscale model coupled with an urban canopy model. J. Appl. Meteor., 43, 18991910.

    • Search Google Scholar
    • Export Citation
  • Kusaka, H., , H. Kondo, , Y. Kikegawa, , and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Layer Meteor., 101, 329358.

    • Search Google Scholar
    • Export Citation
  • Lin, C. Y., , F. Chen, , J. C. Huang, , W. C. Chen, , Y. A. Liou, , W. N. Chen, , and S. C. Liu, 2008: Urban heat island effect and its impact on boundary layer development and land–sea circulation over northern Taiwan. Atmos. Environ., 42, 56355649.

    • Search Google Scholar
    • Export Citation
  • Loridan, T., and Coauthors, 2010: Trade-offs and responsiveness of the single-layer urban canopy parametrization in WRF: An offline evaluation using the MOSCEM optimization algorithm and field observations. Quart. J. Roy. Meteor. Soc., 136, 9971019.

    • Search Google Scholar
    • Export Citation
  • Mac Nally, R., 2000: Regression and model-building in conservation biology, biogeography and ecology: The distinction between and reconciliation of ‘predictive’ and ‘explanatory’ models. Biodivers. Conserv., 9, 655671.

    • Search Google Scholar
    • Export Citation
  • Malevich, S. B., , and K. Klink, 2011: Relationships between snow and the wintertime Minneapolis urban heat island. J. Appl. Meteor. Climatol., 50, 18841894.

    • Search Google Scholar
    • Export Citation
  • Martilli, A., , A. Clappier, , and M. W. Rotach, 2002: An urban surface exchange parameterization for mesoscale models. Bound.-Layer Meteor., 104, 261304.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., , and T. F. Stocker, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 748–845.

  • Miao, S. G., , F. Chen, , M. A. Lemone, , M. Tewari, , Q. C. Li, , and Y. C. Wang, 2009: An observational and modeling study of characteristics of urban heat island and boundary layer structures in Beijing. J. Appl. Meteor. Climatol., 48, 484501.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., , S. J. Taubman, , P. D. Brown, , M. J. Iacono, , and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • Molina, L. T., , and M. J. Molina, 2002: Air Quality in the Mexico Megacity: An Integrated Assessment, Alliance for Global Sustainability Book Series, Vol. 2, Kluwer Academic, 408 pp.

  • Molina, L. T., and Coauthors, 2010: An overview of the MILAGRO 2006 campaign: Mexico City emissions and their transport and transformation. Atmos. Chem. Phys., 10, 86978760.

    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1988: Boundary Layer Climates. Vol. 2. 2nd ed. Routledge, 464 pp.

  • Oleson, K. W., , G. B. Bonan, , and J. Feddema, 2010: Effects of white roofs on urban temperature in a global climate model. Geophys. Res. Lett., 37, L03701, doi:10.1029/2009GL042194.

    • Search Google Scholar
    • Export Citation
  • Owen, T. W., , T. N. Carlson, , and R. R. Gillies, 1998: An assessment of satellite remotely-sensed land cover parameters in quantitatively describing the climatic effect of urbanization. Int. J. Remote Sens., 19, 16631681.

    • Search Google Scholar
    • Export Citation
  • Pena, M. A., 2008: Relationships between remotely sensed surface parameters associated with the urban heat sink formation in Santiago, Chile. Int. J. Remote Sens., 29, 43854404.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., , M. D. King, , S. A. Ackerman, , W. P. Menzel, , B. A. Baum, , J. C. Riedi, , and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41, 459473.

    • Search Google Scholar
    • Export Citation
  • Pongracz, R., , J. Bartholy, , and Z. Dezso, 2010: Application of remotely sensed thermal information to urban climatology of central European cities. Phys. Chem. Earth, 35, 9599.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., , and M. K. Yau, 1989: A Short Course in Cloud Physics. 3rd ed. Int. Series in Natural Philosophy, Vol. 113, Pergamon Press, 304 pp.

  • Rosenzweig, C., , W. Solecki, , L. Parshall, , S. Gaffin, , B. Lynn, , R. Goldberg, , J. Cox, , and S. Hodges, 2006: Mitigating New York City’s heat island with urban forestry, living roofs, and light surfaces. Preprints, Sixth Symp. on the Urban Environment, Atlanta, GA, Amer. Meteor. Soc., J3.2. [Available online at http://ams.confex.com/ams/pdfpapers/103341.pdf.]

  • Saitoh, T. S., , T. Shimada, , and H. Hoshi, 1996: Modeling and simulation of the Tokyo urban heat island. Atmos. Environ., 30, 34313442.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., , and Y. Mintz, 1982: Influence of land-surface evapotranspiration on the earth’s climate. Science, 215, 14981501.

  • Skamarock, W. C., and Coauthors, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note 468+STR, 88 pp.

  • Streutker, D. R., 2003: Satellite-measured growth of the urban heat island of Houston, Texas. Remote Sens. Environ., 85, 282289.

  • Taha, H., 1999: Modifying a mesoscale meteorological model to better incorporate urban heat storage: A bulk-parameterization approach. J. Appl. Meteor., 38, 466473.

    • Search Google Scholar
    • Export Citation
  • Takane, Y., , and H. Kusaka, 2011: Formation mechanisms of the extreme high surface air temperature of 40.9°C observed in the Tokyo metropolitan area: Considerations of dynamic foehn and foehnlike wind. J. Appl. Meteor. Climatol., 50, 18271841.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192.

  • Wan, Z., 1999: MODIS land-surface temperature algorithm theoretical basis document (LST ATBD), version 3.3. Institute for Computational Earth System Science, University of California, Santa Barbara, Tech. Rep., 75 pp. [Available online at http://modis.gsfc.nasa.gov/data/atbd/atbd_mod11.pdf.]

  • Wan, Z., 2006: MODIS land surface temperature products users’ guide. Institute for Computational Earth System Science, University of California, Santa Barbara, Tech. Rep., 35 pp. [Available online at http://g.icess.ucsb.edu/modis/LstUsrGuide/MODIS_LST_products_Users_guide.pdf.]

  • Wan, Z., , Y. L. Zhang, , Q. C. Zhang, , and Z. L. Li, 2002: Validation of the land-surface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiometer data. Remote Sens. Environ., 83, 163180.

    • Search Google Scholar
    • Export Citation
  • Weng, Q. H., , D. S. Lu, , and J. Schubring, 2004: Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sens. Environ., 89, 467483.

    • Search Google Scholar
    • Export Citation
  • Yoshikado, H., , and M. Tsuchida, 1996: High levels of winter air pollution under the influence of the urban heat island along the shore of Tokyo Bay. J. Appl. Meteor., 35, 18041813.

    • Search Google Scholar
    • Export Citation
  • Zängl, G., , B. Chimani, , and C. Häberli, 2004: Numerical simulations of the foehn in the Rhine Valley on 24 October 1999 (MAP IOP 10). Mon. Wea. Rev., 132, 368389.

    • Search Google Scholar
    • Export Citation
  • Zhang, C. L., , F. Chen, , S. G. Miao, , Q. C. Li, , X. A. Xia, , and C. Y. Xuan, 2009: Impacts of urban expansion and future green planting on summer precipitation in the Beijing metropolitan area. J. Geophys. Res., 114, D02116, doi:10.1029/2008JD010328.

    • Search Google Scholar
    • Export Citation
  • Zhang, P., , M. L. Imhoff, , R. E. Wolfe, , and L. Bounoua, 2010: Characterizing urban heat islands of global settlements using MODIS and nighttime lights products. Can. J. Remote Sens., 36, 185196.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 326 326 73
PDF Downloads 296 296 108

Seasonal Variations of the Urban Heat Island at the Surface and the Near-Surface and Reductions due to Urban Vegetation in Mexico City

View More View Less
  • 1 Department of Earth and Atmospheric Sciences, Saint Louis University, St. Louis, Missouri
© Get Permissions
Restricted access

Abstract

The contrast of vegetation cover in urban and surrounding areas modulates the magnitude of the urban heat island (UHI). This paper examines the seasonal variations of the UHI using the Moderate Resolution Imaging Spectroradiometer (MODIS), surface meteorological observations, and the Weather Research and Forecasting (WRF) model. A distinction is made between the land surface UHI observed by satellite and the near-surface UHI observed by measuring the air temperature. The land surface UHI is found to be high at night throughout the year but drops during the wet season. The daytime UHI is low or even exhibits an urban cool island throughout the year but increases during the wet season. The near-surface air temperature UHI trend is similar to the land surface temperature UHI at night. By day, however, the air temperature UHI remains constant throughout the year. Regression analysis showed that the daytime land surface UHI correlates with the difference in vegetation fraction between the urban and surrounding areas, and, to a lesser extent, with daytime insolation. At night, the UHI correlates with nighttime atmospheric stability and only weakly with differences in vegetation cover and daytime insolation. WRF simulations with the single-layer Urban Canopy Model were initialized with MODIS data, especially for the urban fraction parameter. The simulations correctly represented the distinct seasonal variations of both types of UHIs. The model was used to test the impact of changes in vegetation fraction in the urban area, indicating that increased vegetation would reduce both the land surface UHI and the air temperature UHI at night, as well as the land surface UHI during the daytime.

Corresponding author address: Benjamin de Foy, Dept. of Earth and Atmospheric Sciences, Saint Louis University, St. Louis, MO 63108. E-mail: bdefoy@slu.edu

Abstract

The contrast of vegetation cover in urban and surrounding areas modulates the magnitude of the urban heat island (UHI). This paper examines the seasonal variations of the UHI using the Moderate Resolution Imaging Spectroradiometer (MODIS), surface meteorological observations, and the Weather Research and Forecasting (WRF) model. A distinction is made between the land surface UHI observed by satellite and the near-surface UHI observed by measuring the air temperature. The land surface UHI is found to be high at night throughout the year but drops during the wet season. The daytime UHI is low or even exhibits an urban cool island throughout the year but increases during the wet season. The near-surface air temperature UHI trend is similar to the land surface temperature UHI at night. By day, however, the air temperature UHI remains constant throughout the year. Regression analysis showed that the daytime land surface UHI correlates with the difference in vegetation fraction between the urban and surrounding areas, and, to a lesser extent, with daytime insolation. At night, the UHI correlates with nighttime atmospheric stability and only weakly with differences in vegetation cover and daytime insolation. WRF simulations with the single-layer Urban Canopy Model were initialized with MODIS data, especially for the urban fraction parameter. The simulations correctly represented the distinct seasonal variations of both types of UHIs. The model was used to test the impact of changes in vegetation fraction in the urban area, indicating that increased vegetation would reduce both the land surface UHI and the air temperature UHI at night, as well as the land surface UHI during the daytime.

Corresponding author address: Benjamin de Foy, Dept. of Earth and Atmospheric Sciences, Saint Louis University, St. Louis, MO 63108. E-mail: bdefoy@slu.edu
Save