Evaluation of TRMM Rain Estimates Using Ground Measurements over Central Florida

Jianxin Wang Science System and Applications, Inc., Lanham, and NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Jianxin Wang in
Current site
Google Scholar
PubMed
Close
and
David B. Wolff Science System and Applications, Inc., Lanham, and NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by David B. Wolff in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study evaluates space-based rain estimates from the Tropical Rainfall Measuring Mission (TRMM) satellite using ground-based measurements from the radar (GR) and tipping-bucket rain gauges (TG) over the TRMM Ground Validation (GV) site at Melbourne, Florida. The satellite rain products are derived from the TRMM Microwave Imager (TMI), precipitation radar (PR), and combined (COM) rain algorithms using observations from both instruments. The TRMM satellite and GV rain products are spatiotemporally matched and are intercompared at multiple time scales over the 12-yr period from 1998 to 2009. On monthly and yearly scales, the TG agree excellently with the GR because the GR rain rates are generated using the TG data as a constraint on a monthly basis. However, large disagreements exist between the GR and TG at shorter time scales because of their significantly different spatial and temporal sampling modes. The yearly biases relative to the GR for the PR and TMI are generally negative, with a few exceptions. The COM bias fluctuates from year to year over the 12-yr period. The PR, TMI, and COM are in good overall agreement with the GR in the lower range of rain rates, but the agreement is notably worse at higher rain rates. The diurnal cycle of rainfall is captured well by all products, but the peak satellite-derived rainfall (PR, TMI, and COM) lags the peak from the ground measurements (GR and TG) by ~1 h.

Corresponding author address: Jianxin Wang, NASA/GSFC, Code 612, Greenbelt, MD 20771. E-mail: jianxin.wang@nasa.gov

Abstract

This study evaluates space-based rain estimates from the Tropical Rainfall Measuring Mission (TRMM) satellite using ground-based measurements from the radar (GR) and tipping-bucket rain gauges (TG) over the TRMM Ground Validation (GV) site at Melbourne, Florida. The satellite rain products are derived from the TRMM Microwave Imager (TMI), precipitation radar (PR), and combined (COM) rain algorithms using observations from both instruments. The TRMM satellite and GV rain products are spatiotemporally matched and are intercompared at multiple time scales over the 12-yr period from 1998 to 2009. On monthly and yearly scales, the TG agree excellently with the GR because the GR rain rates are generated using the TG data as a constraint on a monthly basis. However, large disagreements exist between the GR and TG at shorter time scales because of their significantly different spatial and temporal sampling modes. The yearly biases relative to the GR for the PR and TMI are generally negative, with a few exceptions. The COM bias fluctuates from year to year over the 12-yr period. The PR, TMI, and COM are in good overall agreement with the GR in the lower range of rain rates, but the agreement is notably worse at higher rain rates. The diurnal cycle of rainfall is captured well by all products, but the peak satellite-derived rainfall (PR, TMI, and COM) lags the peak from the ground measurements (GR and TG) by ~1 h.

Corresponding author address: Jianxin Wang, NASA/GSFC, Code 612, Greenbelt, MD 20771. E-mail: jianxin.wang@nasa.gov
Save
  • Adler, R. F., and Coauthors, 2003: The version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 1147–1167.

    • Search Google Scholar
    • Export Citation
  • Amitai, E., 2000: Systematic variation of observed radar reflectivity–rainfall rate relations in the tropics. J. Appl. Meteor., 39, 2198–2208.

    • Search Google Scholar
    • Export Citation
  • Amitai, E., L. Liao, X. Llort, and R. Meneghini, 2005: Accuracy verification of spaceborne radar estimates of rain rate. Atmos. Sci. Lett., 6, 2–6.

    • Search Google Scholar
    • Export Citation
  • Anagnostou, E. N., C. A. Morales, and T. Dinku, 2001: The use of TRMM precipitation radar observations in determining ground radar calibration biases. J. Atmos. Oceanic Technol., 18, 616–628.

    • Search Google Scholar
    • Export Citation
  • Berg, W., T. L’Ecuyer, and C. Kummerow, 2006: Rainfall climate regimes: The relationship of regional TRMM rainfall biases to the environment. J. Appl. Meteor. Climatol., 45, 434–454.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and C. Jakob, 2002: Evaluation of the diurnal cycle of precipitation, surface thermodynamics, and surface fluxes in the ECMWF model using LBA data. J. Geophys. Res., 107, 8045, doi:10.1029/2001JD000427.

    • Search Google Scholar
    • Export Citation
  • Bowman, K. P., 2005: Comparison of TRMM precipitation retrievals with rain gauge data from ocean buoys. J. Climate, 18, 178–190.

  • Ciach, J. G., and W. F. Krajewski, 1999: On the estimation of radar rainfall error variance. Adv. Water Resour., 22, 585–595.

  • Dinku, T., F. Ruiz, S. J. Connor, and P. Ceccato, 2010: Validation and intercomparison of satellite rainfall estimates over Colombia. J. Appl. Meteor. Climatol., 49, 1004–1014.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., J. E. Janowiak, and C. Kidd, 2007: Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Amer. Meteor. Soc., 88, 47–64.

    • Search Google Scholar
    • Export Citation
  • Fisher, B. L., 2004: Climatological validation of TRMM TMI and PR monthly rain products over Oklahoma. J. Appl. Meteor., 43, 519–535.

    • Search Google Scholar
    • Export Citation
  • Fisher, B. L., 2007: Statistical error decomposition of regional-scale climatological precipitation estimates from the Tropical Rainfall Measuring Mission (TRMM). J. Appl. Meteor. Climatol., 46, 791–813.

    • Search Google Scholar
    • Export Citation
  • Gabella, M., J. Joss, G. Perona, and S. Michaelides, 2006: Range adjustment for ground-based radar, derived with the spaceborne TRMM precipitation radar. IEEE Trans. Geosci. Remote Sens., 44, 126–133.

    • Search Google Scholar
    • Export Citation
  • Haddad, Z. S., E. A. Smith, C. D. Kummerow, T. Iguchi, M. R. Farrar, S. L. Durden, M. Alves, and W. S. Olson, 1997: The TRMM ‘day-1’ radar/radiometer combined rain-profiling algorithm. J. Meteor. Soc. Japan, 75, 799–809.

    • Search Google Scholar
    • Export Citation
  • Hitschfeld, W., and J. Bordan, 1954: Errors inherent in the radar measurements of rainfall at attenuating wavelengths. J. Meteor., 11, 58–67.

    • Search Google Scholar
    • Export Citation
  • Hsu, K. L., H. V. Gupta, X. Gao, and S. Sorooshian, 1999: Estimation of physical variables from multi-channel remotely sensed imagery using a neural network: Application to rainfall estimation. Water Resour. Res., 35, 1605–1618.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation datasets. Bull. Amer. Meteor. Soc., 78, 5–20.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 38–55.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., and R. Meneghini, 1994: Intercomparison of single-frequency methods for retrieving a vertical rain profile from airborne or spaceborne radar data. J. Atmos. Oceanic Technol., 11, 1507–1516.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., T. Kozu, R. Meneghini, J. Awaka, and K. Okamoto, 2000: Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor., 39, 2038–2052.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487–503.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. S. Olson, and L. Giglio, 1996: A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors. IEEE Trans. Geosci. Remote Sens., 34, 1213–1232.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2001: The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40, 1801–1840.

    • Search Google Scholar
    • Export Citation
  • Negri, A. J., L. Xu, and R. F. Adler, 2002: A TRMM-calibrated infrared rainfall algorithm applied over Brazil. J. Geophys. Res., 107, 8048, doi:10.1029/2000JD000265.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16, 1456–1475.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., E. J. Zipser, and C. Kummerow, 2004: An examination of version-5 rainfall estimates from the TRMM Microwave Imager, precipitation radar, and rain gauges on global, regional, and storm scales. J. Appl. Meteor., 43, 1016–1036.

    • Search Google Scholar
    • Export Citation
  • Okamoto, K., T. Iguchi, N. Takahashi, T. Ushio, J. Awaka, S. Shige, and T. Kubota, 2007: High precision and high resolution global precipitation map from satellite data. Proc. ISAP, Kaohsiung, Taiwan, Intelligent System Applications to Power Systems, 506–509.

  • Olson, W. S., and Coauthors, 2006: Precipitation and latent heating distributions from satellite passive microwave radiometry. Part I: Improved method and uncertainty estimates. J. Appl. Meteor. Climatol., 45, 702–720.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., D. B. Wolff, and E. Amitai, 1994: The window probability matching method for rainfall measurements with radar. J. Appl. Meteor., 33, 682–693.

    • Search Google Scholar
    • Export Citation
  • Serra, Y. L., and M. J. McPhaden, 2003: Multiple time- and space-scale comparisons of ATLAS buoy rain gauge measurements with TRMM satellite precipitation measurements. J. Appl. Meteor., 42, 1045–1059.

    • Search Google Scholar
    • Export Citation
  • Sieck, L. C., S. J. Burges, and M. Steiner, 2007: Challenges in obtaining reliable measurements of point rainfall. Water Resour. Res., 43, W01420, doi:10.1029/2005WR004519.

    • Search Google Scholar
    • Export Citation
  • Smith, E. A., F. J. Turk, M. R. Farrar, A. Mugnai, and X. Xiang, 1997: Estimating 13.8-GHz path-integrated attenuation from 10.7-GHz brightness temperatures for TRMM combined PR–TMI precipitation algorithm. J. Appl. Meteor., 36, 365–388.

    • Search Google Scholar
    • Export Citation
  • Sohn, B. J., H.-J. Han, and E.-K. Seo, 2010: Validation of satellite-based high-resolution rainfall products over the Korean Peninsula using data from a dense rain gauge network. J. Appl. Meteor. Climatol., 49, 701–714.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., K. Hsu, X. Gao, H. V. Gupta, B. Imam, and D. Braithwaite, 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81, 2035–2046.

    • Search Google Scholar
    • Export Citation
  • Stocker, E. F., J. Kwiatkowski, and O. Kelley, 2001: Gridded hourly text products: A TRMM data reduction approach. Proc. 2001 Int. Geoscience and Remote Sensing Symp., Sydney, NSW, Australia, IEEE, 658–660.

  • Tian, Y., C. D. Peters-Lidard, B. J. Choudhury, and M. Garcia, 2007: Multitemporal analysis of TRMM-based satellite precipitation products for land data assimilation applications. J. Hydrometeor., 8, 1165–1183.

    • Search Google Scholar
    • Export Citation
  • Turk, F. J., and S. D. Miller, 2005: Toward improving estimates of remotely sensed precipitation with MODIS/AMSR-E blended data techniques. IEEE Trans. Geosci. Remote Sens., 43, 1059–1069.

    • Search Google Scholar
    • Export Citation
  • Vasiloff, S., and Coauthors, 2007: Improving QPE and very short term QPF: An initiative for a community-wide integrated approach. Bull. Amer. Meteor. Soc., 88, 1899–1911.

    • Search Google Scholar
    • Export Citation
  • Wang, J., and D. B. Wolff, 2009: Comparisons of reflectivities from the TRMM precipitation radar and ground-based radars. J. Atmos. Oceanic Technol., 26, 857–875.

    • Search Google Scholar
    • Export Citation
  • Wang, J., and D. B. Wolff, 2010: Evaluation of TRMM ground-validation radar-rain errors using rain gauge measurements. J. Appl. Meteor. Climatol., 49, 310–324.

    • Search Google Scholar
    • Export Citation
  • Wang, J., B. L. Fisher, and D. B. Wolff, 2008: Estimating rain rates from tipping-bucket rain gauge measurements. J. Atmos. Oceanic Technol., 25, 43–56.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. Academic Press, 467 pp.

  • Wolff, D. B., and B. L. Fisher, 2008: Comparisons of instantaneous TRMM ground validation and satellite rain-rate estimates at different spatial scales. J. Appl. Meteor. Climatol., 47, 2215–2237.

    • Search Google Scholar
    • Export Citation
  • Wolff, D. B., D. A. Marks, E. Amitai, D. S. Silberstein, B. L. Fisher, A. Tokay, J. Wang, and J. L. Pippitt, 2005: Ground validation for the Tropical Rainfall Measuring Mission (TRMM). J. Atmos. Oceanic Technol., 22, 365–380.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539–2558.

    • Search Google Scholar
    • Export Citation
  • Yang, S., and E. A. Smith, 2006: Mechanisms for diurnal variability of global tropical rainfall observed from TRMM. J. Climate, 19, 5190–5226.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 220 74 12
PDF Downloads 128 22 4