• Arnfield, A. J., 1982: An approach to the estimation of the surface radiative properties and radiation budgets of cities. Phys. Geogr., 3, 97122.

    • Search Google Scholar
    • Export Citation
  • Arnfield, A. J., 2003: Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol., 23, 126.

    • Search Google Scholar
    • Export Citation
  • Atkinson, B. W., 2003: Numerical modelling of urban heat-island intensity. Bound.-Layer Meteor., 109, 285310.

  • Bottyan, Z., , and J. Unger, 2003: A multiple linear statistical model for estimating the mean maximum urban heat island. Theor. Appl. Climatol., 75, 233243.

    • Search Google Scholar
    • Export Citation
  • Bowler, D. E., , L. Buyung-Ali, , T. M. Knight, , and A. S. Pullin, 2010: Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape Urban Plann., 97, 147155.

    • Search Google Scholar
    • Export Citation
  • Chen, F., , and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585.

    • Search Google Scholar
    • Export Citation
  • Chen, S.-H., , and W.-Y. Sun, 2002: A one-dimensional time dependent cloud model. J. Meteor. Soc. Japan, 80, 99118.

  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107.

    • Search Google Scholar
    • Export Citation
  • Dupont, S., , and P. G. Mestayer, 2006: Parameterization of the urban energy budget with the submesoscale soil model. J. Appl. Meteor. Climatol., 45, 17441765.

    • Search Google Scholar
    • Export Citation
  • Fan, H., , and D. J. Sailor, 2005: Modeling the impacts of anthropogenic heating on the urban climate of Philadelphia: A comparison of implementations in two PBL schemes. Atmos. Environ., 39, 7384.

    • Search Google Scholar
    • Export Citation
  • Fung, W. Y., , K. S. Lam, , J. Nichol, , and M. S. Wong, 2009: Derivation of nighttime urban air temperatures using a satellite thermal image. J. Appl. Meteor. Climatol., 48, 863872.

    • Search Google Scholar
    • Export Citation
  • Gedzelman, S. D., , S. Austin, , R. Cermak, , N. Stefano, , S. Partridge, , S. Quesenberry, , and D. A. Robinson, 2003: Mesoscale aspects of the urban heat island around New York City. Theor. Appl. Climatol., 75, 2942.

    • Search Google Scholar
    • Export Citation
  • Giridharan, R., , S. S. Y. Lau, , S. Ganesan, , and B. Givoni, 2007: Urban design factors influencing heat island intensity in high-rise high-density environments of Hong Kong. Build. Environ., 42, 36693684.

    • Search Google Scholar
    • Export Citation
  • Giridharan, R., , S. S. Y. Lau, , S. Ganesan, , and B. Givoni, 2008: Lowering the outdoor temperature in high-rise high-density residential developments of coastal Hong Kong: The vegetation influence. Build. Environ., 43, 15831595.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., 2007: Urbanization and global environmental change: Local effects of urban warming. Geogr. J., 173, 8388.

  • Hidalgo, J., , V. Masson, , A. Baklanov, , G. Pigeon, , and L. Gimeno, 2008: Advances in urban climate modeling. Ann. N. Y. Acad. Sci., 1146, 354374.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., , Y. Noh, , and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341.

    • Search Google Scholar
    • Export Citation
  • Ichinose, T., , K. Shimodozono, , and K. Hanaki, 1999: Impact of anthropogenic heat on urban climate in Tokyo. Atmos. Environ., 33, 38973909.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. T., , T. R. Oke, , T. J. Lyons, , D. G. Steyn, , I. D. Watson, , and J. A. Voogt, 1991: Simulation of surface urban heat islands under “ideal” conditions at night. Part 1: Theory and tests against field data. Bound.-Layer Meteor., 56, 275294.

    • Search Google Scholar
    • Export Citation
  • Kim, Y.-H., , and J.-J. Baik, 2002: Maximum urban heat island intensity in Seoul. J. Appl. Meteor., 41, 651659.

  • Kim, Y.-H., , and J.-J. Baik, 2004: Daily maximum urban heat island intensity in large cities of Korea. Theor. Appl. Climatol., 79, 151164.

    • Search Google Scholar
    • Export Citation
  • Klysik, K., , and K. Fortuniak, 1999: Temporal and spatial characteristics of the urban heat island of Lodz, Poland. Atmos. Environ., 33, 38853895.

    • Search Google Scholar
    • Export Citation
  • Kondo, H., , and Y. Kikegawa, 2003: Temperature variation in the urban canopy with anthropogenic energy use. Pure Appl. Geophys., 160, 317324.

    • Search Google Scholar
    • Export Citation
  • Kruger, E. L., , F. O. Minella, , and F. Rasia, 2011: Impact of urban geometry on outdoor thermal comfort and air quality from field measurements in Curitiba, Brazil. Build. Environ., 46, 621634.

    • Search Google Scholar
    • Export Citation
  • Kusaka, H., , and F. Kimura, 2004: Thermal effects of urban canyon structure on the nocturnal heat island: Numerical experiment using a mesoscale model coupled with an urban canopy model. J. Appl. Meteor., 43, 18991910.

    • Search Google Scholar
    • Export Citation
  • Kusaka, H., , H. Kondo, , Y. Kikegawa, , and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Layer Meteor., 101, 329358.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-H., , C.-K. Song, , J.-J. Baik, , and S.-U. Park, 2009: Estimation of anthropogenic heat emission in the Gyeong-In region of Korea. Theor. Appl. Climatol., 96, 291303.

    • Search Google Scholar
    • Export Citation
  • Martilli, A., 2002: Numerical study of urban impact on boundary layer structure: Sensitivity to wind speed, urban morphology, and rural soil moisture. J. Appl. Meteor., 41, 12471266.

    • Search Google Scholar
    • Export Citation
  • Martilli, A., , A. Clappier, , and M. W. Rotach, 2002: An urban surface exchange parameterisation for mesoscale models. Bound.-Layer Meteor., 104, 261304.

    • Search Google Scholar
    • Export Citation
  • Masson, V., 2000: A physically-based scheme for the urban energy budget in atmospheric models. Bound.-Layer Meteor., 94, 357397.

  • Mills, G., 1997: An urban canopy-layer climate model. Theor. Appl. Climatol., 57, 229244.

  • Mirzaei, P. A., , and F. Haghighat, 2010: Approaches to study urban heat island—Abilities and limitations. Build. Environ., 45, 21922201.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., , S. J. Taubman, , P. D. Brown, , M. J. Iacono, , and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • Morris, C. J. G., , I. Simmonds, , and N. Plummer, 2001: Quantification of the influences of wind and cloud on the nocturnal urban heat island of a large city. J. Appl. Meteor., 40, 169182.

    • Search Google Scholar
    • Export Citation
  • Ohashi, Y., , Y. Genchi, , H. Kondo, , Y. Kikegawa, , H. Yoshikado, , and Y. Hirano, 2007: Influence of air-conditioning waste heat on air temperature in Tokyo during summer: Numerical experiments using an urban canopy model coupled with a building energy model. J. Appl. Meteor. Climatol., 46, 6681.

    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1981: Canyon geometry and the nocturnal urban heat island: Comparison of scale model and field observations. J. Climatol., 1, 237254.

    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1982: The energetic basis of the urban heat island. Quart. J. Roy. Meteor. Soc., 108, 124.

  • Oke, T. R., 1987: Boundary Layer Climates. 2nd ed. Routledge, 435 pp.

  • Rizwan, A. M., , L. Y. C. Dennis, , and C. Liu, 2008: A review on the generation, determination and mitigation of Urban Heat Island. J. Environ. Sci., 20, 120128.

    • Search Google Scholar
    • Export Citation
  • Runnalls, K. E., , and T. R. Oke, 2000: Dynamics and controls of the near-surface heat island of Vancouver, British Columbia. Phys. Geogr., 21, 283304.

    • Search Google Scholar
    • Export Citation
  • Ryu, Y.-H., , J.-J. Baik, , and S.-H. Lee, 2011: A new single-layer urban canopy model for use in mesoscale atmospheric models. J. Appl. Meteor. Climatol., 50, 17731794.

    • Search Google Scholar
    • Export Citation
  • Shahmohamadi, P., , A. I. Che-Ani, , A. Ramly, , K. N. A. Maulud, , and M. F. I. Mohd-Nor, 2010: Reducing urban heat island effects: A systematic review to achieve energy consumption balance. Int. J. Phys. Sci., 5, 626636.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp.

  • Stein, U., , and P. Alpert, 1993: Factor separation in numerical simulations. J. Atmos. Sci., 50, 21072115.

  • Taha, H., 1997: Urban climates and heat islands: Albedo, evapotranspiration, and anthropogenic heat. Energy Build., 25, 99103.

  • Taha, H., , H. Akbari, , A. Rosenfeld, , and J. Huang, 1988: Residential cooling loads and the urban heat island—The effects of albedo. Build. Environ., 23, 271283.

    • Search Google Scholar
    • Export Citation
  • Terjung, W. H., , and S. S.-F. Louie, 1973: Solar radiation and urban heat islands. Ann. Assoc. Amer. Geogr., 63, 181207.

  • Tokairin, T., , H. Kondo, , H. Yoshikado, , Y. Genchi, , T. Ihara, , Y. Kikegawa, , Y. Hirano, , and K. Asahi, 2006: Numerical study on the effect of buildings on temperature variation in urban and suburban areas in Tokyo. J. Meteor. Soc. Japan, 84, 921937.

    • Search Google Scholar
    • Export Citation
  • Velazquez-Lozada, A., , J. E. Gonzalez, , and A. Winter, 2006: Urban heat island effect analysis for San Juan, Puerto Rico. Atmos. Environ., 40, 17311741.

    • Search Google Scholar
    • Export Citation
  • Yamashita, S., , K. Sekine, , M. Shoda, , K. Yamashita, , and Y. Hara, 1986: On relationships between heat island and sky view factor in the cities of Tama River basin, Japan. Atmos. Environ., 20, 681686.

    • Search Google Scholar
    • Export Citation
  • Zoulia, I., , M. Santamouris, , and A. Dimoudi, 2009: Monitoring the effect of urban green areas on the heat island in Athens. Environ. Monit. Assess., 156, 275292.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 367 367 89
PDF Downloads 351 351 77

Quantitative Analysis of Factors Contributing to Urban Heat Island Intensity

View More View Less
  • 1 School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea
© Get Permissions
Restricted access

Abstract

This study identifies causative factors of the urban heat island (UHI) and quantifies their relative contributions to the daytime and nighttime UHI intensities using a mesoscale atmospheric model that includes a single-layer urban canopy model. A midlatitude city and summertime conditions are considered. Three main causative factors are identified: anthropogenic heat, impervious surfaces, and three-dimensional (3D) urban geometry. Furthermore, the 3D urban geometry factor is subdivided into three subfactors: additional heat stored in vertical walls, radiation trapping, and wind speed reduction. To separate the contributions of the factors and interactions between the factors, a factor separation analysis is performed. In the daytime, the impervious surfaces contribute most to the UHI intensity. The anthropogenic heat contributes positively to the UHI intensity, whereas the 3D urban geometry contributes negatively. In the nighttime, the anthropogenic heat itself contributes most to the UHI intensity, although it interacts strongly with other factors. The factor that contributes the second most is the impervious-surfaces factor. The 3D urban geometry contributes positively to the nighttime UHI intensity. Among the 3D urban geometry subfactors, the additional heat stored in vertical walls contributes most to both the daytime and nighttime UHI intensities. Extensive sensitivity experiments to anthropogenic heat intensity and urban surface parameters show that the relative importance and ranking order of the contributions are similar to those in the control experiment.

Corresponding author address: Jong-Jin Baik, School of Earth and Environmental Sciences, Seoul National University, Seoul 151-742, South Korea. E-mail: jjbaik@snu.ac.kr

Abstract

This study identifies causative factors of the urban heat island (UHI) and quantifies their relative contributions to the daytime and nighttime UHI intensities using a mesoscale atmospheric model that includes a single-layer urban canopy model. A midlatitude city and summertime conditions are considered. Three main causative factors are identified: anthropogenic heat, impervious surfaces, and three-dimensional (3D) urban geometry. Furthermore, the 3D urban geometry factor is subdivided into three subfactors: additional heat stored in vertical walls, radiation trapping, and wind speed reduction. To separate the contributions of the factors and interactions between the factors, a factor separation analysis is performed. In the daytime, the impervious surfaces contribute most to the UHI intensity. The anthropogenic heat contributes positively to the UHI intensity, whereas the 3D urban geometry contributes negatively. In the nighttime, the anthropogenic heat itself contributes most to the UHI intensity, although it interacts strongly with other factors. The factor that contributes the second most is the impervious-surfaces factor. The 3D urban geometry contributes positively to the nighttime UHI intensity. Among the 3D urban geometry subfactors, the additional heat stored in vertical walls contributes most to both the daytime and nighttime UHI intensities. Extensive sensitivity experiments to anthropogenic heat intensity and urban surface parameters show that the relative importance and ranking order of the contributions are similar to those in the control experiment.

Corresponding author address: Jong-Jin Baik, School of Earth and Environmental Sciences, Seoul National University, Seoul 151-742, South Korea. E-mail: jjbaik@snu.ac.kr
Save