A Summary of Convective-Core Vertical Velocity Properties Using ARM UHF Wind Profilers in Oklahoma

Scott E. Giangrande * Atmospheric Sciences Division, Brookhaven National Laboratory, Upton, New York

Search for other papers by Scott E. Giangrande in
Current site
Google Scholar
PubMed
Close
,
Scott Collis Environmental Sciences Division, Argonne National Laboratory, Argonne, Illinois

Search for other papers by Scott Collis in
Current site
Google Scholar
PubMed
Close
,
Jerry Straka University of Oklahoma, Norman, Oklahoma

Search for other papers by Jerry Straka in
Current site
Google Scholar
PubMed
Close
,
Alain Protat Bureau of Meteorology, Melbourne, Victoria, Australia

Search for other papers by Alain Protat in
Current site
Google Scholar
PubMed
Close
,
Christopher Williams Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Christopher Williams in
Current site
Google Scholar
PubMed
Close
, and
Steven Krueger ** University of Utah, Salt Lake City, Utah

Search for other papers by Steven Krueger in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study presents a summary of the properties of deep convective updraft and downdraft cores over the central plains of the United States, accomplished using a novel and now-standard Atmospheric Radiation Measurement Program (ARM) scanning mode for a commercial wind-profiler system. A unique profiler-based hydrometeor fall-speed correction method modeled for the convective environment was adopted. Accuracy of the velocity retrievals from this effort is expected to be within 2 m s−1, with minimal bias and base core resolution expected near 1 km. Updraft cores are found to behave with height in reasonable agreement with aircraft observations of previous continental convection, including those of the Thunderstorm Project. Intense updraft cores with magnitudes exceeding 15 m s−1 are routinely observed. Downdraft cores are less frequently observed, with weaker magnitudes than updrafts. Weak, positive correlations are found between updraft intensity (maximum) and updraft diameter length (coefficient r to 0.5 aloft). Negligible correlations are observed for downdraft core lengths and intensity.

Corresponding author address: Scott Giangrande, Atmospheric Sciences Division, Brookhaven National Laboratory, Bldg. 490D, Bell Ave., Upton, NY 11973. E-mail: scott.giangrande@bnl.gov

Abstract

This study presents a summary of the properties of deep convective updraft and downdraft cores over the central plains of the United States, accomplished using a novel and now-standard Atmospheric Radiation Measurement Program (ARM) scanning mode for a commercial wind-profiler system. A unique profiler-based hydrometeor fall-speed correction method modeled for the convective environment was adopted. Accuracy of the velocity retrievals from this effort is expected to be within 2 m s−1, with minimal bias and base core resolution expected near 1 km. Updraft cores are found to behave with height in reasonable agreement with aircraft observations of previous continental convection, including those of the Thunderstorm Project. Intense updraft cores with magnitudes exceeding 15 m s−1 are routinely observed. Downdraft cores are less frequently observed, with weaker magnitudes than updrafts. Weak, positive correlations are found between updraft intensity (maximum) and updraft diameter length (coefficient r to 0.5 aloft). Negligible correlations are observed for downdraft core lengths and intensity.

Corresponding author address: Scott Giangrande, Atmospheric Sciences Division, Brookhaven National Laboratory, Bldg. 490D, Bell Ave., Upton, NY 11973. E-mail: scott.giangrande@bnl.gov
Save
  • Ackerman, T. P., and G. M. Stokes, 2003: The Atmospheric Radiation Measurement Program. Phys. Today, 56, 3844.

  • Anderson, N. F., C. A. Grainger, and J. L. Stith, 2005: Characteristics of strong updrafts in precipitation systems over the central tropical Pacific Ocean and in the Amazon. J. Appl. Meteor., 44, 731738.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674701.

    • Search Google Scholar
    • Export Citation
  • Battan, L. J., and J. B. Theiss, 1970: Measurement of vertical velocities in convective clouds by means of pulsed-Doppler radar. J. Atmos. Sci., 27, 293298.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., J. Vivekanandan, J. D. Tuttle, and C. J. Kessinger, 1995: A study of thunderstorm microphysics with multiparameter radar and aircraft observations. Mon. Wea. Rev., 123, 31293143.

    • Search Google Scholar
    • Export Citation
  • Byers, H. R., and R. R. Braham, 1949: The Thunderstorm—Report of the Thunderstorm Project. U.S. Weather Bureau, 287 pp.

  • Campos, E. F., F. Fabry, and W. Hocking, 2007: Precipitation measurements using VHF wind profiler radars: Measuring rainfall and vertical air velocities using only observations with a VHF radar. Radio Sci., 42, RS3003, doi:10.1029/2006RS003540.

    • Search Google Scholar
    • Export Citation
  • Cifelli, R., and S. Rutledge, 1994: Vertical motion structure in Maritime Continent mesoscale convective systems: Results from a 50-MHz profiler. J. Atmos. Sci., 51, 26312652.

    • Search Google Scholar
    • Export Citation
  • Cronce, M., R. M. Rauber, K. R. Knupp, B. F. Jewett, J. T. Walters, and D. Phillips, 2007: Vertical motions in precipitation bands in three winter cyclones. J. Appl. Meteor. Climatol., 46, 15231543.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., 2012: Representing the sensitivity of convective cloud systems to tropospheric humidity in general circulation models. Surv. Geophys., 33, 637656.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., W. Kovari, M.-S. Yao, and J. Jonas, 2005: Cumulus microphysics and climate sensitivity. J. Climate, 18, 23762387.

  • Del Genio, A. D., J. Wu, and Y. Chen, 2012: Characteristics of mesoscale organization in WRF simulations of convection during TWP-ICE. J. Climate, 25, 56665688.

    • Search Google Scholar
    • Export Citation
  • Donner, L. J., 1993: A cumulus parameterization including mass fluxes, vertical momentum dynamics, and mesoscale effects. J. Atmos. Sci., 50, 889906.

    • Search Google Scholar
    • Export Citation
  • Donner, L. J., C. J. Seman, R. S. Hemler, and S. Fan, 2001: A cumulus parameterization including mass fluxes, convective vertical velocities, and mesoscale effects: Thermodynamic and hydrological aspects in a general circulation model. J. Climate, 14, 34443463.

    • Search Google Scholar
    • Export Citation
  • Ecklund, W. L., C. R. Williams, P. E. Johnston, and K. S. Gage, 1999: A 3-GHz profiler for precipitating cloud studies. J. Atmos. Oceanic Technol., 16, 309322.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., 1994: A two-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249280.

  • Foote, G. B., and P. S. Du Toit, 1969: Terminal velocity of raindrops aloft. J. Appl. Meteor., 8, 249253.

  • Gal-Chen, T., 1982: Errors in fixed and moving frame of references: Applications for conventional and Doppler radar analysis. J. Atmos. Sci., 39, 22792300.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Y. Dawei, 2004: Classification and characterization of tropical precipitation based on high-resolution airborne vertical incidence radar. Part I: Classification. J. Appl. Meteor., 43, 15541566.

    • Search Google Scholar
    • Export Citation
  • Gunn, R., and G. D. Kinzer, 1949: The terminal velocity of fall for water droplets in stagnant air. J. Meteor., 6, 243248.

  • Heymsfield, G. M., L. Tian, A. J. Heymsfield, L. Li, and S. Guimond, 2010: Characteristics of deep tropical and subtropical convection from nadir-viewing high-altitude airborne Doppler radar. J. Atmos. Sci., 67, 285308.

    • Search Google Scholar
    • Export Citation
  • Igau, R. C., M. A. LeMone, and D. Wei, 1999: Updraft and downdraft cores in TOGA COARE: Why so many buoyant downdraft cores? J. Atmos. Sci., 56, 22322245.

    • Search Google Scholar
    • Export Citation
  • Jakob, C., 2010: Accelerating progress in global atmospheric model development through improved parameterizations: Challenges, opportunities, and strategies. Bull. Amer. Meteor. Soc., 91, 869875.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., E. J. Zipser, and M. A. LeMone, 1985: Vertical motions in intense hurricanes. J. Atmos. Sci., 42, 839856.

  • Joss, J., and A. Waldvogel, 1967: A raindrop spectrograph with automatic analysis. Pure Appl. Geophys., 68, 240246.

  • Khairoutdinov, M. F., S. K. Krueger, C.-H. Moeng, P. A. Bogenschutz, and D. A. Randall, 2009: Large-eddy simulation of maritime deep tropical convection. J. Adv. Model. Earth Syst., 1, 15, doi:10.3894/JAMES.2009.1.15.

    • Search Google Scholar
    • Export Citation
  • Kyle, T. G., W. R. Sand, and D. J. Musil, 1976: Fitting measurements of thunderstorm updraft profiles to model profiles. Mon. Wea. Rev., 104, 611617.

    • Search Google Scholar
    • Export Citation
  • Laroche, S., and I. Zawadzki, 1994: A variational analysis method for retrieval of three-dimensional wind field from single-Doppler radar data. J. Atmos. Sci., 51, 26642682.

    • Search Google Scholar
    • Export Citation
  • Lehmiller, G. S., H. B. Bluestein, P. J. Neiman, F. M. Ralph, and W. F. Feltz, 2001: Wind structure in a supercell thunderstorm as measured by a UHF wind profiler. Mon. Wea. Rev., 129, 19681986.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., and E. J. Zipser, 1980: Cumulonimbus vertical velocity events in GATE. Part I: Diameter, intensity and mass flux. J. Atmos. Sci., 37, 24442457.

    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., 1976: Estimating updraft velocity from an airplane response. Mon. Wea. Rev., 104, 618627.

  • Lerach, D. G., S. A. Rutledge, C. R. Williams, and R. Cifelli, 2010: Vertical structure of convective systems during NAME 2004. Mon. Wea. Rev., 138, 16951714.

    • Search Google Scholar
    • Export Citation
  • Loney, M. L., D. S. Zrnić, J. M. Straka, and A. V. Ryzhkov, 2002: Enhanced polarimetric radar signatures above the melting level in a supercell storm. J. Appl. Meteor., 41, 11791194.

    • Search Google Scholar
    • Export Citation
  • Lucas, C., E. J. Zipser, and M. A. LeMone, 1994: Vertical velocity in oceanic convection off tropical Australia. J. Atmos. Sci., 51, 31833193.

    • Search Google Scholar
    • Export Citation
  • Marwitz, J. D., 1973: Trajectories within the weak echo regions of hailstorms. J. Appl. Meteor., 12, 11741182.

  • May, P. T., and R. G. Strauch, 1989: An examination of wind profiler signal processing algorithms. J. Atmos. Oceanic Technol., 6, 731735.

    • Search Google Scholar
    • Export Citation
  • May, P. T., and D. K. Rajopadhyaya, 1996: Wind profiler observations of vertical motion and precipitation microphysics of a tropical squall line. Mon. Wea. Rev., 124, 621633; Corrigendum, 125, 410–413.

    • Search Google Scholar
    • Export Citation
  • May, P. T., and D. K. Rajopadhyaya, 1999: Vertical velocity characteristics of deep convection over Darwin, Australia. Mon. Wea. Rev., 127, 10561071.

    • Search Google Scholar
    • Export Citation
  • May, P. T., A. R. Jameson, T. D. Keenan, P. E. Johnston, and C. Lucas, 2002: Combined wind profiler/polarimetric radar studies of the vertical motion and microphysical characteristics of tropical sea breeze thunderstorms. Mon. Wea. Rev., 130, 22282239.

    • Search Google Scholar
    • Export Citation
  • McLaughlin, D., and Coauthors, 2009: Short-wavelength technology and the potential for distributed networks of small radar systems. Bull. Amer. Meteor. Soc., 90, 17971817.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 30513064.

    • Search Google Scholar
    • Export Citation
  • Miller, L. J., J. D. Tuttle, and G. B. Foote, 1990: Precipitation production in a large Montana hailstorm: Airflow and particle growth trajectories. J. Atmos. Sci., 47, 16191646.

    • Search Google Scholar
    • Export Citation
  • Musil, D. J., A. J. Heymsfield, and P. L. Smith, 1986: Microphysical characteristics of a well-developed weak echo region in a high plains supercell thunderstorm. J. Climate Appl. Meteor., 25, 10371051.

    • Search Google Scholar
    • Export Citation
  • Protat, A., and I. Zawadzki, 1999: A variational method for real-time retrieval of three-dimensional wind field from multiple-Doppler bistatic radar network data. J. Atmos. Oceanic Technol., 16, 432449.

    • Search Google Scholar
    • Export Citation
  • Protat, A., and C. R. Williams, 2011: The accuracy of radar estimates of ice terminal fall speed from vertically pointing Doppler radar measurements. J. Appl. Meteor. Climatol., 50, 21202138.

    • Search Google Scholar
    • Export Citation
  • Ray, P. S., C. L. Ziegler, W. Bumgarner, and R. J. Serafin, 1980: Single- and multiple-Doppler radar observations of tornadic storms. Mon. Wea. Rev., 108, 16071625.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., W. L. Woodley, T. W. Krauss, and V. Makitov, 2006: Aircraft microphysical documentation from cloud base to anvils of hailstorm feeder clouds in Argentina. J. Appl. Meteor. Climatol., 45, 12611281.

    • Search Google Scholar
    • Export Citation
  • Sand, W. R., 1976: Observations in hailstorms using the T-28 aircraft system. J. Appl. Meteor., 15, 641650.

  • Sheppard, B. E., and P. I. Joe, 1994: Comparison of raindrop size distribution measurements by a Joss–Waldvogel disdrometer, a PMS 2DG spectrometer, and a POSS Doppler radar. J. Atmos. Oceanic Technol., 11, 874887.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., P. Kollias, M. Poellot, and E. Eloranta, 2008: On deriving vertical air motions from cloud radar Doppler spectra. J. Atmos. Oceanic Technol., 25, 547557.

    • Search Google Scholar
    • Export Citation
  • Smith, P. L., D. J. Musil, A. G. Detwiler, and R. Ramachandran, 1999: Observations of mixed-phase precipitation within a CaPE thunderstorm. J. Appl. Meteor., 38, 145155.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., 1991: A new relationship between mean Doppler velocity and differential reflectivity. J. Atmos. Oceanic Technol., 8, 430443.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., R. A. Houze Jr., and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34, 19782007.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2009: Convective-scale warn-on-forecast system. Bull. Amer. Meteor. Soc., 90, 14871499.

  • Straka, J. M., and E. R. Mansell, 2005: A bulk microphysics parameterization with multiple ice precipitation categories. J. Appl. Meteor., 44, 445466.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., D. S. Zrnić, and A. V. Ryzhkov, 2000: Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteor., 39, 13411372.

    • Search Google Scholar
    • Export Citation
  • Tridon, F., A. Battaglia, P. Kollias, E. Luke and C. R. Williams, 2013: Signal postprocessing and reflectivity calibration of the Atmospheric Radiation Measurement 915-MHz wind profilers. J. Atmos. Oceanic Technol., 30, 10381054.

    • Search Google Scholar
    • Export Citation
  • Uma, K. N., and T. N. Rao, 2009: Characteristics of vertical velocity cores in different convective systems observed over Gadanki, India. Mon. Wea. Rev., 137, 954975.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520.

    • Search Google Scholar
    • Export Citation
  • Williams, C. R., 2012: Vertical air motion retrieved from dual-frequency profiler observations. J. Atmos. Oceanic Technol., 29, 14711480.

    • Search Google Scholar
    • Export Citation
  • Williams, C. R., W. L. Ecklund, and K. S. Gage, 1995: Classification of precipitating clouds in the tropics using 915-MHz wind profilers. J. Atmos. Oceanic Technol., 12, 9961012.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze Jr., 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part I: Spatial distribution of updrafts, downdrafts, and precipitation. Mon. Wea. Rev., 123, 19211940.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., K. Howard, and J. J. Gourley, 2005: Constructing three-dimensional multiple radar reflectivity mosaics: Examples of convective storms and stratiform rain echoes. J. Atmos. Oceanic Technol., 22, 3042.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2620 1234 247
PDF Downloads 1205 254 29