Implementation of an Urban Parameterization Scheme into the Regional Climate Model COSMO-CLM

Kristina Trusilova Department of Climate and Environment Consultancy, Deutscher Wetterdienst, Offenbach, Germany

Search for other papers by Kristina Trusilova in
Current site
Google Scholar
PubMed
Close
,
Barbara Früh Department of Climate and Environment Consultancy, Deutscher Wetterdienst, Offenbach, Germany

Search for other papers by Barbara Früh in
Current site
Google Scholar
PubMed
Close
,
Susanne Brienen Department of Climate and Environment Consultancy, Deutscher Wetterdienst, Offenbach, Germany

Search for other papers by Susanne Brienen in
Current site
Google Scholar
PubMed
Close
,
Andreas Walter Department of Climate and Environment Consultancy, Deutscher Wetterdienst, Offenbach, Germany

Search for other papers by Andreas Walter in
Current site
Google Scholar
PubMed
Close
,
Valéry Masson Centre National de Recherches Météorologiques, Météo-France, Toulouse, France

Search for other papers by Valéry Masson in
Current site
Google Scholar
PubMed
Close
,
Grégoire Pigeon Centre National de Recherches Météorologiques, Météo-France, Toulouse, France

Search for other papers by Grégoire Pigeon in
Current site
Google Scholar
PubMed
Close
, and
Paul Becker Department of Climate and Environment Consultancy, Deutscher Wetterdienst, Offenbach, Germany

Search for other papers by Paul Becker in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

As the nonhydrostatic regional model of the Consortium for Small-Scale Modelling in Climate Mode (COSMO-CLM) is increasingly employed for studying the effects of urbanization on the environment, the authors extend its surface-layer parameterization by the Town Energy Budget (TEB) parameterization using the “tile approach” for a single urban class. The new implementation COSMO-CLM+TEB is used for a 1-yr reanalysis-driven simulation over Europe at a spatial resolution of 0.11° (~12 km) and over the area of Berlin at a spatial resolution of 0.025° (~2.8 km) for evaluating the new coupled model. The results on the coarse spatial resolution of 0.11° show that the standard and the new models provide 2-m temperature and daily precipitation fields that differ only slightly by from −0.1 to +0.2 K per season and ±0.1 mm day−1, respectively, with very similar statistical distributions. This indicates only a negligibly small effect of the urban parameterization on the model's climatology. Therefore, it is suggested that an urban parameterization may be omitted in model simulations on this scale. On the spatial resolution of 0.025° the model COSMO-CLM+TEB is able to better represent the magnitude of the urban heat island in Berlin than the standard model COSMO-CLM. This finding shows the importance of using the parameterization for urban land in the model simulations on fine spatial scales. It is also suggested that models could benefit from resolving multiple urban land use classes to better simulate the spatial variability of urban temperatures for large metropolitan areas on spatial scales below ~3 km.

Corresponding author address: Kristina Trusilova, Deutscher Wetterdienst, Department of Climate and Environment Consultancy, Frankfurter Str. 135, 63067 Offenbach, Germany. E-mail: kristina.trusilova@dwd.de

Abstract

As the nonhydrostatic regional model of the Consortium for Small-Scale Modelling in Climate Mode (COSMO-CLM) is increasingly employed for studying the effects of urbanization on the environment, the authors extend its surface-layer parameterization by the Town Energy Budget (TEB) parameterization using the “tile approach” for a single urban class. The new implementation COSMO-CLM+TEB is used for a 1-yr reanalysis-driven simulation over Europe at a spatial resolution of 0.11° (~12 km) and over the area of Berlin at a spatial resolution of 0.025° (~2.8 km) for evaluating the new coupled model. The results on the coarse spatial resolution of 0.11° show that the standard and the new models provide 2-m temperature and daily precipitation fields that differ only slightly by from −0.1 to +0.2 K per season and ±0.1 mm day−1, respectively, with very similar statistical distributions. This indicates only a negligibly small effect of the urban parameterization on the model's climatology. Therefore, it is suggested that an urban parameterization may be omitted in model simulations on this scale. On the spatial resolution of 0.025° the model COSMO-CLM+TEB is able to better represent the magnitude of the urban heat island in Berlin than the standard model COSMO-CLM. This finding shows the importance of using the parameterization for urban land in the model simulations on fine spatial scales. It is also suggested that models could benefit from resolving multiple urban land use classes to better simulate the spatial variability of urban temperatures for large metropolitan areas on spatial scales below ~3 km.

Corresponding author address: Kristina Trusilova, Deutscher Wetterdienst, Department of Climate and Environment Consultancy, Frankfurter Str. 135, 63067 Offenbach, Germany. E-mail: kristina.trusilova@dwd.de
Save
  • Arndt, D. S., M. O. Baringer, and M. R. Johnson, 2010: State of the Climate in 2009. Bull. Amer. Meteor. Soc., 91 (7), S1S224.

  • Best, M., 2005: Representing urban areas within operational numerical weather prediction models. Bound.-Layer Meteor., 114, 91109.

  • Businger, J., J. Wyngaard, Y. Izumi, and E. Bradley, 1971: Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181.

    • Search Google Scholar
    • Export Citation
  • Dee, D., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597.

    • Search Google Scholar
    • Export Citation
  • Doms, G., and Coauthors, 2011: A description of the nonhydrostatic regional COSMO model. Part II: Physical parameterization. COSMO, 153 pp. [Available online at http://www.cosmo-model.org/content/model/documentation/core/cosmoPhysParamtr.pdf.]

  • DWD, 2009: WitterungsReport Express: Jahresübersicht (Year overview). U. Wienert et al., Eds., DWD Rep. Book 13, 12 pp.

  • Fritz, S., and Coauthors, 2003: Harmonisation, mosaicing and production of the Global Land Cover 2000 database. European Commission Joint Research Centre, 41 pp. [Available online at http://publications.jrc.ec.europa.eu/repository/handle/111111111/271.]

  • Georgescu, M., M. Moustaoui, A. Mahalov, and J. Dudhia, 2013: Summer-time climate impacts of projected megapolitan expansion in Arizona. Nat. Climate Change, 3, 3741.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C., and Coauthors, 2010: The International Urban Energy Balance Models Comparison Project: First results from phase 1. J. Appl. Meteor. Climatol., 49, 12681292.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C., and Coauthors, 2011: Initial results from Phase 2 of the International Urban Energy Balance Model Comparison. Int. J. Climatol., 31, 244272.

    • Search Google Scholar
    • Export Citation
  • Haylock, M., N. Hofstra, A. Klein Tank, E. Klok, P. Jones, and M. New, 2008: A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res.,113, D20119, doi:10.1029/2008JD010201.

    • Search Google Scholar
    • Export Citation
  • Jaeger, E., I. Anders, D. Luthi, B. Rockel, C. Schar, and S. Seneviratne, 2008: Analysis of ERA40-driven CLM simulations for Europe. Meteor. Z., 17, 349367.

    • Search Google Scholar
    • Export Citation
  • Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Layer Meteor., 101, 329358.

    • Search Google Scholar
    • Export Citation
  • Lemonsu, A., C. S. B. Grimmond, and V. Masson, 2004: Modeling the surface energy balance of the core of an old Mediterranean city: Marseille. J. Appl. Meteor., 43, 312327.

    • Search Google Scholar
    • Export Citation
  • Martilli, A., A. Clappier, and M. W. Rotach, 2002: An urban surface exchange parameterisation for mesoscale models. Bound.-Layer Meteor., 104, 261304.

    • Search Google Scholar
    • Export Citation
  • Mascart, P., J. Noilhan, and H. Giordani, 1995: A modified parameterization of flux-profile relationships in the surface-layer using different roughness length values for heat and momentum. Bound.-Layer Meteor., 72, 331344.

    • Search Google Scholar
    • Export Citation
  • Masson, V., 2000: A physically-based scheme for the urban energy budget in atmospheric models. Bound.-Layer Meteor., 94, 357397.

  • Masson, V., C. S. B. Grimmond, and T. R. Oke, 2002: Evaluation of the Town Energy Balance (TEB) scheme with direct measurements from dry districts in two cities. J. Appl. Meteor., 41, 10111026.

    • Search Google Scholar
    • Export Citation
  • Mayer, H., 2004: Klima in urbanen Räumen (Climate in urban areas). University of Freiburg Lecture Notes, 304 pp.

  • Meißner, C., 2008: High-resolution sensitivity studies with the regional climate model COSMO-CLM. Wissenschaftliche Berichte des Instituts für Meteorologie und Klimaforschung der Universität Karlsruhe (TH), Vol. 42, 1–190.

  • Neunhauserer, L., B. Fay, and M. Raschendorfer, 2007: Towards urbanisation of the non-hydrostatic numerical weather prediction model Lokalmodell (LM). Bound.-Layer Meteor., 124, 8197.

    • Search Google Scholar
    • Export Citation
  • Oleson, K., G. Bonan, J. Feddema, M. Vertenstein, and C. Grimmond, 2008: An urban parameterization for a global climate model. Part I: Formulation and evaluation for two cities. J. Appl. Meteor. Climatol., 47, 10381060.

    • Search Google Scholar
    • Export Citation
  • Piringer, M., and Coauthors, 2007: The surface energy balance and the mixing height in urban areas—Activities and recommendations of COST-Action 715. Bound.-Layer Meteor., 124, 324.

    • Search Google Scholar
    • Export Citation
  • Ratti, C., S. Di Sabatino, R. Britter, M. Brown, E. Caton, S. Burian, R. Sokhi, and J. Bartzis, 2002: Analysis of 3-D urban databases with respect to pollution dispersion for a number of European and American cities. Water, Air, Soil Pollut.: Focus,2 (5–6), 459–469.

  • Rockel, B., A. Will, and A. Hense, 2008: The Regional Climate Model COSMO-CLM (CCLM). Meteor. Z., 17, 347348.

  • Schulz, J.-P., 2008: Introducing sub-grid scale orographic effects in the COSMO model. DWD COSMO Newsletter 9 chapter 3.1, 29–36. [Available online at http://www.cosmo-model.org/content/model/documentation/newsLetters/newsLetter09/cnl9-06.pdf.]

  • Steppeler, J., G. Doms, U. Schattler, H. Bitzer, A. Gassmann, U. Damrath, and G. Gregoric, 2003: Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteor. Atmos. Phys., 82, 7596.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800.

    • Search Google Scholar
    • Export Citation
  • Trusilova, K., M. Jung, G. Churkina, U. Karstens, M. Heimann, and M. Claussen, 2008: Urbanization impacts on the climate in Europe: Numerical experiments by the PSU–NCAR Mesoscale Model (MM5). J. Appl. Meteor. Climatol., 47, 14421455.

    • Search Google Scholar
    • Export Citation
  • Trusilova, K., M. Jung, and G. Churkina, 2009: On climate impacts of a potential expansion of urban land in Europe. J. Appl. Meteor. Climatol., 48, 19711980.

    • Search Google Scholar
    • Export Citation
  • UN, 2009: Highlights. World Urbanization Prospects: The 2009 Revision. Population Division, United Nations Department of Economic and Social Affairs, 47 pp. [Available online at http://esa.un.org/unpd/wup/Documents/WUP2009_Highlights_Final.pdf.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1918 1152 473
PDF Downloads 490 95 11