The Impact of the North Atlantic Oscillation on Renewable Energy Resources in Southwestern Europe

S. Jerez * Instituto Dom Luiz, Universidade de Lisboa, Lisbon, Portugal

Search for other papers by S. Jerez in
Current site
Google Scholar
PubMed
Close
,
R. M. Trigo * Instituto Dom Luiz, Universidade de Lisboa, Lisbon, Portugal
Departamento de Engenharias, Universidade Lusófona, Lisbon, Portugal

Search for other papers by R. M. Trigo in
Current site
Google Scholar
PubMed
Close
,
S. M. Vicente-Serrano Instituto Pirenaico de Ecología (CSIC), Zaragoza, Spain

Search for other papers by S. M. Vicente-Serrano in
Current site
Google Scholar
PubMed
Close
,
D. Pozo-Vázquez Departamento de Física, Universidad de Jaén, Jaén, Spain

Search for other papers by D. Pozo-Vázquez in
Current site
Google Scholar
PubMed
Close
,
R. Lorente-Plazas Departamento de Física, Universidad de Murcia, Murcia, Spain

Search for other papers by R. Lorente-Plazas in
Current site
Google Scholar
PubMed
Close
,
J. Lorenzo-Lacruz Instituto Pirenaico de Ecología (CSIC), Zaragoza, Spain

Search for other papers by J. Lorenzo-Lacruz in
Current site
Google Scholar
PubMed
Close
,
F. Santos-Alamillos Departamento de Física, Universidad de Jaén, Jaén, Spain

Search for other papers by F. Santos-Alamillos in
Current site
Google Scholar
PubMed
Close
, and
J. P. Montávez Departamento de Física, Universidad de Murcia, Murcia, Spain

Search for other papers by J. P. Montávez in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Europe is investing considerably in renewable energies for a sustainable future, with both Iberian countries (Portugal and Spain) promoting significantly new hydropower, wind, and solar plants. The climate variability in this area is highly controlled by just a few large-scale teleconnection modes. However, the relationship between these modes and the renewable climate-dependent energy resources has not yet been established in detail. The objective of this study is to evaluate the impact of the North Atlantic Oscillation (NAO) on the interannual variability of the main and primary renewable energy resources in Iberia. This is achieved through a holistic assessment that is based on a 10-km-resolution climate simulation spanning the period 1959–2007 that provides physically consistent data of the various magnitudes involved. A monthly analysis for the extended winter (October–March) months shows that negative NAO phases enhance wind speeds (10%–15%) and, thereby, wind power (estimated around 30% at typical wind-turbine altitudes) and hydropower resources (with changes in precipitation exceeding 100% and implying prolonged responses in reservoir storage and release throughout the year), while diminishing the solar potential (10%–20%). Opposite signals were also sporadically identified, being well explained when taking into account the orography and the prevailing wind direction during both NAO phases. An additional analysis using real wind, hydropower, and solar power generation data further confirms the strong signature of the NAO.

Corresponding author address: Sonia Jerez, IDL, Faculdade de Ciências, Universidade de Lisboa, Geofísica, Campo Grande, Bldg. C8, 3rd Fl., Lisbon 1749-016, Portugal. E-mail: sonia.jerez@gmail.com

Abstract

Europe is investing considerably in renewable energies for a sustainable future, with both Iberian countries (Portugal and Spain) promoting significantly new hydropower, wind, and solar plants. The climate variability in this area is highly controlled by just a few large-scale teleconnection modes. However, the relationship between these modes and the renewable climate-dependent energy resources has not yet been established in detail. The objective of this study is to evaluate the impact of the North Atlantic Oscillation (NAO) on the interannual variability of the main and primary renewable energy resources in Iberia. This is achieved through a holistic assessment that is based on a 10-km-resolution climate simulation spanning the period 1959–2007 that provides physically consistent data of the various magnitudes involved. A monthly analysis for the extended winter (October–March) months shows that negative NAO phases enhance wind speeds (10%–15%) and, thereby, wind power (estimated around 30% at typical wind-turbine altitudes) and hydropower resources (with changes in precipitation exceeding 100% and implying prolonged responses in reservoir storage and release throughout the year), while diminishing the solar potential (10%–20%). Opposite signals were also sporadically identified, being well explained when taking into account the orography and the prevailing wind direction during both NAO phases. An additional analysis using real wind, hydropower, and solar power generation data further confirms the strong signature of the NAO.

Corresponding author address: Sonia Jerez, IDL, Faculdade de Ciências, Universidade de Lisboa, Geofísica, Campo Grande, Bldg. C8, 3rd Fl., Lisbon 1749-016, Portugal. E-mail: sonia.jerez@gmail.com
Save
  • Caldés, N., M. Varela, M. Santamaría, and R. Sáez, 2009: Economic impact of solar thermal electricity deployment in Spain. Energy Policy, 37, 16281636.

    • Search Google Scholar
    • Export Citation
  • Campo, A., 1992: Status and trends in Spanish hydropower production. Int. Water Power Dam Constr., 44, 3032.

  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585.

    • Search Google Scholar
    • Export Citation
  • Chiacchio, M., and M. Wild, 2010: Influence of NAO and clouds on long-term seasonal variations of surface solar radiation in Europe. J. Geophys. Res., 115, D00D22, doi: 10.1029/2009JD012182.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., B. Machenhauer, R. G. Jones, C. Schär, P. M. Ruti, M. Castro, and G. Visconti, 1997: Validation of present-day climate simulations over Europe: LAM simulations with observed boundary conditions. Climate Dyn., 13, 489506.

    • Search Google Scholar
    • Export Citation
  • Christoudias, T., A. Pozzer, and J. Lelieveld, 2012: Influence of the North Atlantic Oscillation on air pollution transport. Atmos. Chem. Phys., 12, 869877.

    • Search Google Scholar
    • Export Citation
  • Cubasch, U., and Coauthors, 2001: Projections of future climate change. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Ed., Cambridge University Press, 525–582.

  • Dorman, C. E., R. C. Beardsley, and R. Limeburner, 1995: Winds in the Strait of Gibraltar. Quart. J. Roy. Meteor. Soc., 121, 19031921.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107.

    • Search Google Scholar
    • Export Citation
  • Echavarria, E., B. Hahn, G. J. W. Van Bussel, and T. Tomiyama, 2008: Reliability of wind turbine technology through time. J. Sol. Energy Eng., 130, 031005, doi:10.1115/1.2936235.

    • Search Google Scholar
    • Export Citation
  • Esteban-Parra, M. J., F. S. Rodrigo, and Y. Castro-Díez, 1998: Spatial and temporal patterns of precipitation in Spain for the period 1880–1992. Int. J. Climatol., 18, 15571574.

    • Search Google Scholar
    • Export Citation
  • Font-Tullot, I., 2000: Climatología de España y Portugal. Universidad de Salamanca, 422 pp.

  • Gallego, M. C., J. A. García, and J. M. Vaquero, 2005: The NAO signal in daily rainfall series over the Iberian Peninsula. Climate Res., 29, 103109.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., 2006: Climate change hot-spots. Geophys. Res. Lett., 33, L08707, doi:10.1029/2006GL025734.

  • Gómez, A., J. Zubizarreta, C. Dopazo, and N. Fueyo, 2010: Spanish energy roadmap to 2020: Socioeconomic implications of renewable targets. Energy, 36, 19731985.

    • Search Google Scholar
    • Export Citation
  • Gomez-Navarro, J. J., J. P. Montavez, S. Jerez, P. Jimenez-Guerrero, R. Lorente-Plazas, J. F. González-Rouco, and E. Zorita, 2011: A regional climate simulation over the Iberian Peninsula for the last millennium. Climate Past, 7, 451472.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121, 764787.

  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 117 pp.

  • Heide, D., L. Von Bremen, M. Greiner, C. Hoffmann, M. Speckmann, and S. Bonger, 2010: Seasonal optimal mix of wind and solar power in a future, highly renewable Europe. Renew. Energy, 35, 24832489.

    • Search Google Scholar
    • Export Citation
  • Herrera, S., L. Fita, J. Fernandez, and J. M. Gutierrez, 2010: Evaluation of the mean and extreme precipitation regimes from the ENSEMBLES regional climate multimodel simulations over Spain. J. Geophys. Res., 115, D21117, doi:10.1029/2010JD013936.

    • Search Google Scholar
    • Export Citation
  • Herrera, S., J. M. Gutierrez, R. Ancell, M. R. Pons, M. D. Frias, and J. Fernandez, 2012: Development and analysis of a 50 year high-resolution daily gridded precipitation dataset over Spain (Spain02). Int. J. Climatol., 32, 7485.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 23222339.

    • Search Google Scholar
    • Export Citation
  • Hughes, M., A. Hall, and R. G. Fovell, 2009: Blocking in areas of complex topography and its influence on rainfall distribution. J. Atmos. Sci., 66, 508518.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J., 1995: Decadal trends in North Atlantic Oscillation and relationship to regional temperature and precipitation. Science, 269, 676679.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J., and H. Van Loon, 1997: Decadal variations in climate associated with the North Atlantic Oscillation. Climatic Change, 36, 301326.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J., Y. Kushnir, G. Ottersen, and M. Visbeck, 2003: The North Atlantic Oscillation. Climatic Significance and Environmental Impact. Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 279 pp.

  • Jacobson, M., and M. Delucchi, 2009: A path to sustainable energy by 2030. Sci. Amer., 301, 5865.

  • Jerez, S., J. P. Montavez, J. J. Gomez-Navarro, P. Jimenez-Guerrero, J. Jimenez, and J. F. Gonzalez-Rouco, 2010: Temperature sensitivity to the land-surface model in MM5 climate simulations over the Iberian Peninsula. Meteor. Z., 19, 363374.

    • Search Google Scholar
    • Export Citation
  • Jerez, S., J. P. Montavez, J. J. Gomez-Navarro, P. A. Jimenez, P. Jimenez-Guerrero, R. Lorente-Plazas, and J. F. Gonzalez-Rouco, 2012a: The role of the land-surface model for climate change projections over the Iberian Peninsula. J. Geophys. Res., 117, D01109, doi:10.1029/2011JD016576.

    • Search Google Scholar
    • Export Citation
  • Jerez, S., J. P. Montavez, P. Jimenez-Guerrero, J. J. Gomez-Navarro, R. Lorente-Plazas, and E. Zorita, 2012b: A multi-physics ensemble of present-day climate regional simulations over the Iberian Peninsula. Climate Dyn., 40, 30233046, doi:10.1007/s00382-012-1539-1.

    • Search Google Scholar
    • Export Citation
  • Jimenez, P., O. Jorba, R. Parra, and J. M. Baldasano, 2006: Evaluation of MM5-EMICAT2000-CMAQ performance and sensitivity in complex terrain: High-resolution application to the northeastern Iberian Peninsula. Atmos. Environ., 40, 50565072.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643.

    • Search Google Scholar
    • Export Citation
  • Krajacic, G., N. Duic, and M. Carvalho, 2011: How to achieve a 100% RES electricity supply for Portugal? Appl. Energy, 88, 508517.

  • López-Moreno, J. I., and S. M. Vicente-Serrano, 2008: Extreme phases of the wintertime North Atlantic Oscillation and drought occurrence over Europe: A multi-temporal-scale approach. J. Climate, 21, 12201243.

    • Search Google Scholar
    • Export Citation
  • López-Moreno, J. I., S. Beguería, S. M. Vicente-Serrano, and J. M. García-Ruiz, 2007: The influence of the NAO on water resources in central Iberia: Precipitation, streamflow anomalies and reservoir management strategies. Water Resour. Res., 43, W09411, doi:10.1029/2007WR005864.

    • Search Google Scholar
    • Export Citation
  • Lorente-Plazas, R., and Coauthors, 2012: EOLMAP: A web tool to assess the wind resource over Spain. Int. Conf. on Renewable Energies and Power Quality, Santiago de Compostela, Spain, European Association for the Development of Renewable Energies, Environment and Power Quality, 95–105.

  • Lorenzo-Lacruz, J., S. M. Vicente-Serrano, J. I. López-Moreno, S. Beguería, J. M. García-Ruiz, and J. M. Cuadrat, 2010: The impact of droughts and water management on various hydrological systems in the headwaters of the Tagus River (central Spain). J. Hydrol., 386, 1326.

    • Search Google Scholar
    • Export Citation
  • Lorenzo-Lacruz, J., S. M. Vicente-Serrano, J. I. López-Moreno, J. C. González-Hidalgo, and E. Morán-Tejeda, 2011: The response of Iberian rivers to the North Atlantic Oscillation. Hydrol. Earth Syst. Sci., 15, 25812597.

    • Search Google Scholar
    • Export Citation
  • Lorenzo-Lacruz, J., S. M. Vicente-Serrano, J. I. López-Moreno, E. Morán-Tejeda, and J. Zabalza, 2012: Recent trends in Iberian streamflows (1945–2005). J. Hydrol., 414–415, 463475.

    • Search Google Scholar
    • Export Citation
  • Martín, M. L., F. Valero, A. Morata, M. Y. Luna, A. Pascual, and D. Santos-Muñoz, 2010: Springtime coupled modes of regional wind in the Iberian Peninsula and large-scale variability patterns. Int. J. Climatol., 31, 880895.

    • Search Google Scholar
    • Export Citation
  • Martín, M. L., F. Valero, A. Pascual, A. Morata, and M. Y. Luna, 2011: Springtime connections between the large-scale sea-level pressure field and gust wind speed over Iberia and the Balearics. Nat. Hazards Earth Syst., 11, 191203.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • Morán-Tejeda, E., J. I. López-Moreno, A. Ceballos-Carbancho, and S. M. Vicente-Serrano, 2011: Streamflow response to positive and negative phases of the North Atlantic Oscillation in the Duero basin (central-Spain): Spatial variability and response times. Hydrol. Processes, 25, 13131326.

    • Search Google Scholar
    • Export Citation
  • Muñoz-Díaz, D., and F. S. Rodrigo, 2003: Effects of the North Atlantic Oscillation on the probability for climatic categories of local monthly rainfall in southern Spain. Int. J. Climatol., 23, 381397.

    • Search Google Scholar
    • Export Citation
  • Osborn, T. J., K. R. Briffa, S. F. B. Tett, P. D. Jones, and R. M. Trigo, 1999: Evaluation of the North Atlantic Oscillation as simulated by a coupled climate model. Climate Dyn., 15, 685702.

    • Search Google Scholar
    • Export Citation
  • Palutikof, J. P., P. M. Kelly, T. D. Davies, and J. A. Halliday, 1987: Impacts of spatial and temporal wind speed variability on wind energy output. J. Appl. Meteor., 26, 11241133.

    • Search Google Scholar
    • Export Citation
  • Paredes, D., R. M. Trigo, R. Garcia-Herrera, and I. F. Trigo, 2006: Understanding precipitation changes in Iberia in early spring: Weather typing and storm-tracking approaches. J. Hydrometeor., 7, 101113.

    • Search Google Scholar
    • Export Citation
  • Patel, S., 2011: Spain: A renewable kingdom. Power Policy, June, 30–37. [Available online at http://www.powermag.com/business/3722.html.]

  • Pires, C. A., and R. A. P. Perdigão, 2007: Non-Gaussianity and asymmetry of the winter monthly precipitation estimation from the NAO. Mon. Wea. Rev., 135, 430448.

    • Search Google Scholar
    • Export Citation
  • Pozo-Vázquez, D., J. Tovar-Pescador, S. R. Gámiz-Fortis, M. J. Esteban-Parra, and Y. Castro-Díez, 2004: NAO and solar radiation variability in the European North Atlantic region. Geophys. Res. Lett., 31, L05201, doi:10.1029/2003GL018502.

    • Search Google Scholar
    • Export Citation
  • Pozo-Vázquez, D., F. J. Santos-Alamillos, V. Lara-Fanego, J. A. Ruiz-Arias, and J. Tovar-Pescador, 2011: The impact of the NAO on the solar and wind energy resources in the Mediterranean area. Advances in Global Change Research: Hydrological, Socioeconomic and Ecological Impacts of the North Atlantic Oscillation in the Mediterranean Region, S. M. Vicente-Serrano and R. M. Trigo, Eds., Springer, 213–231.

  • Rodó, X., E. Baert, and F. A. Comin, 1997: Variations in seasonal rainfall in southern Europe during the present century: Relationships with the North Atlantic Oscillation and the El Niño–Southern Oscillation. Climate Dyn., 13, 275284.

    • Search Google Scholar
    • Export Citation
  • Rodrigo, F. S., M. J. Esteban-Parra, D. Pozo-Vázquez, and Y. Castro-Díez, 2000: Rainfall variability in southern Spain on decadal to centennial times scales. Int. J. Climatol., 20, 721732.

    • Search Google Scholar
    • Export Citation
  • Ruiz-Arias, J. A., J. Terrados, P. Pérez-Higueras, D. Pozo-Vázquez, and G. Almonacid, 2012: Assessment of the renewable energies potential for intensive electricity production in the province of Jaén, southern Spain. Renew. Sustainable Energy Rev., 16, 29943001.

    • Search Google Scholar
    • Export Citation
  • Salzmann, N., C. Frei, P. Vidale, and M. Hoelzle, 2007: The application of Regional Climate Model output for the simulation of high-mountain permafrost scenarios. Global Planet. Change, 56, 188202.

    • Search Google Scholar
    • Export Citation
  • Sanchez-Lorenzo, A., J. Calbó, and J. Martin-Vide, 2008: Spatial and temporal trends in sunshine duration over western Europe (1938–2004). J. Climate, 21, 60896098.

    • Search Google Scholar
    • Export Citation
  • Snedecor, G. W., and W. G. Cochran, 1989: Statistical Methods. Iowa State University Press, 503 pp.

  • Stenzel, T., and A. Frenzel, 2008: Regulating technological change—The strategic reactions of utility companies towards subsidy policies in the German, Spanish and UK electricity markets. Energy Policy, 36, 26452657.

    • Search Google Scholar
    • Export Citation
  • Tapiador, F. J., 2009: Assessment of renewable energy potential through satellite data and numerical models. Energy Environ. Sci., 2, 11421161.

    • Search Google Scholar
    • Export Citation
  • Trigo, I. F., 2006: Climatology and interannual variability of storm-tracks in the Euro-Atlantic sector: A comparison between ERA-40 and NCEP/NCAR reanalyses. Climate Dyn., 26, 127143.

    • Search Google Scholar
    • Export Citation
  • Trigo, R. M., 2011: The impacts of the NAO on hydrological resources of the western Mediterranean. Advances in Global Change Research: Hydrological, Socioeconomic and Ecological Impacts of the North Atlantic Oscillation in the Mediterranean Region, S. M. Vicente-Serrano and R. M. Trigo, Eds., Springer, 41–56.

  • Trigo, R. M., T. J. Osborn, and J. M. Corte-Real, 2002: The North Atlantic Oscillation influence on Europe: Climate impacts and associated physical mechanisms. Climate Res., 20, 917.

    • Search Google Scholar
    • Export Citation
  • Trigo, R. M., D. Pozo-Vázquez, T. J. Osborn, Y. Castro-Díez, S. Gámiz-Forti, and M. J. Esteban-Parra, 2004: North Atlantic Oscillation influence on precipitation, river flow and water resources in the Iberian Peninsula. Int. J. Climatol., 24, 925944.

    • Search Google Scholar
    • Export Citation
  • Trigo, R. M., M. A. Valente, I. F. Trigo, P. M. A. Miranda, A. M. Ramos, D. Paredes, and R. García-Herrera, 2008: The impact of North Atlantic wind and cyclone trends on European precipitation and significant wave height in the Atlantic. Ann. N.Y. Acad. Sci., 1146, 212234.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, U., and M. Christoph, 1999: A shift of the NAO and increasing storm track activity over Europe due to anthropogenic greenhouse gas forcing. Climate Dyn., 15, 551559.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Wanner, H., S. Brönnimann, C. Casty, D. Gyalistras, J. Luterbacher, C. Schmutz, D. B. Stephenson, and E. Xoplaki, 2001: North Atlantic Oscillation—Concepts and studies. Surv. Geophys., 22, 321382.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., and C. Schwierz, 2006: Surface cyclones in the ERA-40 dataset (1958–2001). Part I: Novel identification method and global climatology. J. Atmos. Sci., 63, 24862507.

    • Search Google Scholar
    • Export Citation
  • Zorita, E., V. Kharin, and H. von Storch, 1992: The atmospheric circulation and sea surface temperature in the North Atlantic area in winter: Their interaction and relevance for Iberian precipitation. J. Climate, 5, 10971108.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1576 309 35
PDF Downloads 764 202 27