Toward the Assimilation of the Atmospheric Surface Layer Using Numerical Weather Prediction and Radar Clutter Observations

Ali Karimian Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Ali Karimian in
Current site
Google Scholar
PubMed
Close
,
Caglar Yardim Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Caglar Yardim in
Current site
Google Scholar
PubMed
Close
,
Tracy Haack Naval Research Laboratory, Monterey, California

Search for other papers by Tracy Haack in
Current site
Google Scholar
PubMed
Close
,
Peter Gerstoft Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Peter Gerstoft in
Current site
Google Scholar
PubMed
Close
,
William S. Hodgkiss Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by William S. Hodgkiss in
Current site
Google Scholar
PubMed
Close
, and
Ted Rogers Atmospheric Propagation Branch, Space and Naval Warfare Systems Center, San Diego, California

Search for other papers by Ted Rogers in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Radio wave propagation on low-altitude paths over the ocean above 2 GHz is significantly affected by negative refractivity gradients in the atmospheric surface layer, which form what is often referred to as an evaporation duct (ED). Refractivity from clutter (RFC) is an inversion approach for the estimation of the refractivity profile from radar clutter, and RFC-ED refers to its implementation for the case of evaporation ducts. An approach for fusing RFC-ED output with evaporation duct characterization that is based on ensemble forecasts from a numerical weather prediction (NWP) model is examined here. Three conditions of air–sea temperature difference (ASTD) are examined. Synthetic radar clutter observations are generated using the Advanced Propagation Model. The impacts of ASTD on the evaporation duct refractivity profile, atmospheric parameter inversion, and propagation factor distributions are studied. Relative humidity at a reference height and ASTD are identified as state variables. Probability densities from NWP ensembles, RFC-ED, and joint inversions are compared. It is demonstrated that characterization of the near-surface atmosphere by combining RFC-ED and NWP reduces the estimation uncertainty of ASTD and relative humidity in an evaporation duct, with respect to using either method alone.

Corresponding author address: Ali Karimian, Scripps Institution of Oceanography, University of California, San Diego, 291 Rosecrans St., San Diego, CA 92106. E-mail: alik@ucsd.edu

Abstract

Radio wave propagation on low-altitude paths over the ocean above 2 GHz is significantly affected by negative refractivity gradients in the atmospheric surface layer, which form what is often referred to as an evaporation duct (ED). Refractivity from clutter (RFC) is an inversion approach for the estimation of the refractivity profile from radar clutter, and RFC-ED refers to its implementation for the case of evaporation ducts. An approach for fusing RFC-ED output with evaporation duct characterization that is based on ensemble forecasts from a numerical weather prediction (NWP) model is examined here. Three conditions of air–sea temperature difference (ASTD) are examined. Synthetic radar clutter observations are generated using the Advanced Propagation Model. The impacts of ASTD on the evaporation duct refractivity profile, atmospheric parameter inversion, and propagation factor distributions are studied. Relative humidity at a reference height and ASTD are identified as state variables. Probability densities from NWP ensembles, RFC-ED, and joint inversions are compared. It is demonstrated that characterization of the near-surface atmosphere by combining RFC-ED and NWP reduces the estimation uncertainty of ASTD and relative humidity in an evaporation duct, with respect to using either method alone.

Corresponding author address: Ali Karimian, Scripps Institution of Oceanography, University of California, San Diego, 291 Rosecrans St., San Diego, CA 92106. E-mail: alik@ucsd.edu
Save
  • Babin, S. M., and G. D. Dockery, 2002: LKB-based evaporation duct model comparison with buoy data. J. Appl. Meteor., 41, 434446.

  • Babin, S. M., G. A. Young, and J. A. Carton, 1997: A new model of the oceanic evaporation duct. J. Appl. Meteor., 36, 193204.

  • Barrios, A. E., K. Anderson, and G. Lindem, 2006: Low altitude propagation effects—A validation study of the Advanced Propagation Model (APM) for mobile radio applications. IEEE Trans. Antennas Propag., 54, 28692877, doi:10.1109/TAP.2006.882163.

    • Search Google Scholar
    • Export Citation
  • Bevis, M., S. Businger, and S. Chiswell, 1994: GPS meteorology: Mapping zenith wet delays onto precipitable water. J. Appl. Meteor., 33, 379386.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., and Z. Toth, 1999: Ensemble transformation and adaptive observations. J. Atmos. Sci., 56, 17481765.

  • Burk, S. D., T. Haack, L. T. Rogers, and L. J. Wagner, 2003: Island wake dynamics and wake influence on the evaporation duct and radar propagation. J. Appl. Meteor., 42, 342367.

    • Search Google Scholar
    • Export Citation
  • Cook, J., and S. Burk, 1992: Potential refractivity as a similarity variable. Bound.-Layer Meteor., 58, 151159.

  • Dockery, G. D., 1990: Method for modeling sea surface clutter in complicated propagation environments. IEE Proc. Radar Signal Process.,137, 73–79.

  • Dodgett, M., 1997: An atmospheric sensitivity and validation study of the variable terrain radio parabolic equation model. M.S. thesis, Graduate School of Engineering, Air Force Institute of Technology, 78 pp.

  • Douvenot, R., V. Fabbro, P. Gerstoft, C. Bourlier, and J. Saillard, 2010: Real time refractivity from clutter using a best fit approach improved with physical information. Radio Sci., 45, RS1007, doi:10.1029/2009RS004137.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591.

    • Search Google Scholar
    • Export Citation
  • Foken, T., 2006: 50 years of the Monin–Obukhov similarity theory. Bound.-Layer Meteor., 119, 431447.

  • Frederickson, P., 2010: Software design description for the Navy Atmospheric Vertical Surface Layer Model (NAVSLaM). Naval Oceanographic Office Tech. Rep. OAML-SDD-95, 35 pp.

  • Frederickson, P., K. L. Davidson, and A. K. Goroch, 2000: Operational bulk evaporation duct model for MORIAH, ver. 1.2. Naval Postgraduate School Tech. Rep. NPS/MR-2000-002, 70 pp.

  • Gerstoft, P., L. T. Rogers, W. S. Hodgkiss, and L. J. Wagner, 2003a: Refractivity estimation using multiple elevation angles. IEEE J. Oceanic Eng., 28, 513525, doi:10.1109/JOE.2003.816680.

    • Search Google Scholar
    • Export Citation
  • Gerstoft, P., L. T. Rogers, J. L. Krolik, and W. S. Hodgkiss, 2003b: Inversion for refractivity parameters from radar sea clutter. Radio Sci., 38, 122, doi:10.1029/2002RS002640.

    • Search Google Scholar
    • Export Citation
  • Haack, T., C. Wang, S. Garrett, A. Glazer, J. Mailhot, and R. Marshall, 2010: Mesoscale modeling of boundary layer refractivity and atmospheric ducting. J. Appl. Meteor. Climatol., 49, 24372457.

    • Search Google Scholar
    • Export Citation
  • Helvey, R. A., 1983: Radiosonde errors and spurious surface-based ducts. Proc. IEE F,130,643648.

  • Hodur, R. M., 1997: The Naval Research Laboratory's Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS). Mon. Wea. Rev., 125, 14141430.

    • Search Google Scholar
    • Export Citation
  • Hodur, R. M., X. Hong, J. D. Doyle, J. Pullen, J. Cummings, P. Martin, and M. A. Rennick, 2001: The Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Oceanography, 15, 8898.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation, and Predictability. Cambridge University Press, 341 pp.

  • Karimian, A., C. Yardim, P. Gerstoft, W. S. Hodgkiss, and A. E. Barrios, 2011: Refractivity estimation from sea clutter: An invited review. Radio Sci., 46, RS6013, doi:10.1029/2011RS004818.

    • Search Google Scholar
    • Export Citation
  • Karimian, A., C. Yardim, P. Gerstoft, W. S. Hodgkiss, and A. E. Barrios, 2012a: Estimation of refractivity using a multiple angle clutter model. Radio Sci., 47, RS0M07, doi:10.1029/2011RS004701.

    • Search Google Scholar
    • Export Citation
  • Karimian, A., C. Yardim, P. Gerstoft, W. S. Hodgkiss, and A. E. Barrios, 2012b: Multiple grazing angle sea clutter modeling. IEEE Trans. Antennas Propag., 60, 44084417.

    • Search Google Scholar
    • Export Citation
  • Lermusiaux, P., J. Xu, C. F. Chen, S. Jan, L. Y. Chiu, and Y. Yang, 2011: Coupled ocean–acoustic prediction of transmission loss in a continental shelfbreak region: Predictive skill, uncertainty quantification, and dynamical sensitivities. IEEE J. Oceanic Eng., 35, 895916.

    • Search Google Scholar
    • Export Citation
  • Liu, W. T., K. B. Katsaros, and J. A. Businger, 1979: Bulk parameterization of air–sea exchanges of heat and water vapor including the molecular constraints at the interface. J. Atmos. Sci., 36, 17221735.

    • Search Google Scholar
    • Export Citation
  • McLay, J. G., C. H. Bishop, and C. A. Reynolds, 2008: Evaluation of the ensemble transform analysis perturbation scheme at NRL. Mon. Wea. Rev., 136, 10931108.

    • Search Google Scholar
    • Export Citation
  • Mentes, S., and Z. Kaymaz, 2007: Investigation of surface duct conditions over Istanbul, Turkey. J. Appl. Meteor. Climatol., 46, 318337.

    • Search Google Scholar
    • Export Citation
  • Patterson, W. L., 1998: Advanced Refractive Effects Prediction System (AREPS), version 1.0 user's manual. Space and Naval Warfare System Center Tech. Doc. 3028, 168 pp.

  • Rogers, L. T., C. P. Hattan, and J. K. Stapleton, 2000: Estimating evaporation duct heights from radar sea echo. Radio Sci., 35, 955966, doi:10.1029/1999RS002275.

    • Search Google Scholar
    • Export Citation
  • Rowland, J. R., G. C. Konstanzer, M. R. Neves, R. E. Miller, J. H. Meyer, and J. R. Rottier, 1996: SEAWASP: Refractivity characterization using shipboard sensors. Proc. 1996 Battlespace Atmospheric Conf., San Diego, CA, Naval Command, Control and Ocean Surveillance Center, 155–164.

  • Skolnik, M. I., 2008: Radar Handbook. 3rd ed. McGraw-Hill, 1328 pp.

  • Thacker, W. C., and O. E. Esenkov, 2002: Assimilating XBT data into HYCOM. J. Atmos. Oceanic Technol., 19, 709724.

  • Thayer, G. D., 1974: An improved equation for the radio refractive index of air. Radio Sci., 9, 803807.

  • Vasudevan, S., R. Anderson, S. Kraut, P. Gerstoft, L. T. Rogers, and J. L. Krolik, 2007: Recursive Bayesian electromagnetic refractivity estimation from radar sea clutter. Radio Sci., 42, RS2014, doi:10.1029/2005RS003423.

    • Search Google Scholar
    • Export Citation
  • Wang, C., D. Wilson, T. Haack, P. Clark, H. Lean, and R. Marshall, 2012: Effects of initial and boundary conditions of mesoscale models on simulated atmospheric refractivity. J. Appl. Meteor. Climatol., 51, 115131.

    • Search Google Scholar
    • Export Citation
  • Warner, T. T., 2011: Numerical Weather and Climate Prediction. Cambridge University Press, 526 pp.

  • Yardim, C., P. Gerstoft, and W. S. Hodgkiss, 2007: Statistical maritime radar duct estimation using a hybrid genetic algorithm—Markov chain Monte Carlo method. Radio Sci., 42, RS3014, doi:10.1029/2006RS003561.

    • Search Google Scholar
    • Export Citation
  • Yardim, C., P. Gerstoft, and W. S. Hodgkiss, 2008: Tracking refractivity from clutter using Kalman and particle filters. IEEE Trans. Antennas Propag., 56, 10581070, doi:10.1109/TAP.2008.919205.

    • Search Google Scholar
    • Export Citation
  • Yardim, C., P. Gerstoft, and W. S. Hodgkiss, 2009: Sensitivity analysis and performance estimation of refractivity from clutter technique. Radio Sci., 44, RS1008, doi:10.1029/2008RS003897.

    • Search Google Scholar
    • Export Citation
  • Zhao, X., and S. Huang, 2012: Estimation of atmospheric duct structure using radar sea clutter. J. Atmos. Sci., 69, 28082818.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 275 86 8
PDF Downloads 281 110 9