• Andrić, J., M. R. Kumjian, D. S. Zrnić, J. M. Straka, and V. M. Melnikov, 2013: Polarimetric signatures above the melting layer in winter storms: An observational and modeling study. J. Appl. Meteor. Climatol., 52, 682700.

    • Search Google Scholar
    • Export Citation
  • Bailey, M. P., and J. Hallett, 2009: A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS II, and other field studies. J. Atmos. Sci., 66, 28882899.

    • Search Google Scholar
    • Export Citation
  • Bocchieri, J. R., 1980: The objective use of upper air soundings to specify precipitation type. Mon. Wea. Rev., 108, 596603.

  • Bocchieri, J. R., and G. J. Maglaras, 1983: An improved operational system for forecasting precipitation type. Mon. Wea. Rev., 111, 405419.

    • Search Google Scholar
    • Export Citation
  • Boodoo, S., D. Hudak, N. Donaldson, and M. Leduc, 2010: Application of dual-polarization radar melting-layer detection algorithm. J. Appl. Meteor. Climatol., 49, 17791793.

    • Search Google Scholar
    • Export Citation
  • Bourgouin, P., 2000: A method to determine precipitation types. Wea. Forecasting, 15, 583592.

  • Brandes, E. A., and K. Ikeda, 2004: Freezing-level estimation with polarimetric radar. J. Appl. Meteor., 43, 15411553.

  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

    • Search Google Scholar
    • Export Citation
  • Cao, Q., G. Zhang, E. Brandes, T. Schuur, A. V. Ryzhkov, and K. Ikeda, 2008: Analysis of video disdrometer and polarimetric radar data to characterize rain microphysics in Oklahoma. J. Appl. Meteor. Climatol., 47, 22382255.

    • Search Google Scholar
    • Export Citation
  • Czys, R. R., R. W. Scott, K. C. Tang, R. W. Przybylinski, and M. E. Sabones, 1996: A physically based, nondimensional parameter for discriminating between locations of freezing rain and ice pellets. Wea. Forecasting, 11, 591598.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. Academic Press, 562 pp.

  • Efron, B., and R. J. Tibshirani, 1993: An Introduction to the Bootstrap. Chapman and Hall, 456 pp.

  • Giangrande, S. E., J. M. Krause, and A. V. Ryzhkov, 2008: Automatic designation of the melting layer with a polarimetric prototype of the WSR-88D radar. J. Appl. Meteor. Climatol., 47, 13541364.

    • Search Google Scholar
    • Export Citation
  • Gibson, S. R., and R. E. Stewart, 2007: Observations of ice pellets during a winter storm. Atmos. Res., 85, 6476.

  • Gibson, S. R., R. E. Stewart, and W. Henson, 2009: On the variation of ice pellet characteristics. J. Geophys. Res., 114, D09207, doi:10.1029/2008JD011260.

    • Search Google Scholar
    • Export Citation
  • Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 2628.

  • Houser, J. L., and H. B. Bluestein, 2011: Polarimetric Doppler radar observations of Kelvin–Helmholtz waves in a winter storm. J. Atmos. Sci., 68, 16761702.

    • Search Google Scholar
    • Export Citation
  • Ikeda, K., E. A. Brandes, and R. M. Rasmussen, 2005: Polarimetric radar observation of multiple freezing levels. J. Atmos. Sci., 62, 36423636.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., M. P. Bailey, J. Hallett, and G. A. Isaac, 2004: Laboratory and in situ observation of deposition growth of frozen drops. J. Appl. Meteor., 43, 612622.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2010: The impact of evaporation on the polarimetric characteristics of rain: Theoretical model and practical implications. J. Appl. Meteor. Climatol., 49, 12471267.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2012: The impact of size sorting on the polarimetric radar variables. J. Atmos. Sci., 69, 20422060.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., S. M. Ganson, and A. V. Ryzhkov, 2012: Freezing of raindrops in deep convective updrafts: Polarimetric and microphysical model. J. Atmos. Sci., 69, 34713490.

    • Search Google Scholar
    • Export Citation
  • Lamb, D., and J. Verlinde, 2011: Physics and Chemistry of Clouds. Cambridge University Press, 584 pp.

  • Martner, B. E., J. B. Snider, R. J. Zamora, G. P. Byrd, T. A. Niziol, and P. I. Joe, 1993: A remote-sensing view of a freezing-rain storm. Mon. Wea. Rev., 121, 25622577.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., R. F. Reinking, R. A. Kropfli, and B. W. Bartram, 1996: Estimation of ice hydrometeor types and shapes from radar polarization measurements. J. Atmos. Oceanic Technol., 13, 8596.

    • Search Google Scholar
    • Export Citation
  • National Weather Service, cited 2012a: 2009 significant weather events summary: Western and central Oklahoma & western north Texas. Weather Forecast Office, Norman, OK. [Available online at http://www.srh.noaa.gov/oun/?n=events-2009summary.]

  • National Weather Service, cited 2012b: The winter storm of January 31–February 1, 2011. Weather Forecast Office, Norman, OK. [Available online at http://www.srh.noaa.gov/oun/?n=events-20110131.]

  • Palmer, R. D., and Coauthors, 2011: Observations of the 10 May 2010 tornado outbreak using OU-PRIME: Potential for new science with high-resolution polarimetric radar. Bull. Amer. Meteor. Soc., 92, 871891.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1978: Microphysics of Clouds and Precipitation. 2nd ed. Oxford University Press, 953 pp.

  • Rauber, R. M., L. S. Olthoff, M. K. Ramamurthy, and K. E. Kunkel, 2001: Further investigation of a physically based, nondimensional parameter for discriminating between locations of freezing rain and ice pellets. Wea. Forecasting, 16, 185191.

    • Search Google Scholar
    • Export Citation
  • Ray, P., 1972: Broadband complex refractive indices of ice and water. Appl. Opt., 11, 18361844.

  • Ryzhkov, A. V., D. S. Zrnić, and B. A. Gordon, 1998: Polarimetric method for ice water content determination. J. Appl. Meteor., 37, 125134.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, P. L. Heinselman, S. E. Giangrande, and D. S. Zrnić, 2005: The Joint Polarization Experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86, 809824.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. Pinsky, A. Pokrovsky, and A. Khain, 2011: Polarimetric radar observation operator for a cloud model with spectral microphysics. J. Appl. Meteor. Climatol., 50, 873894.

    • Search Google Scholar
    • Export Citation
  • Schuur, T. J., H.-S. Park, A. V. Ryzhkov, and H. D. Reeves, 2012: Classification of precipitation types during transitional winter weather using the RUC model and polarimetric radar retrievals. J. Appl. Meteor. Climatol., 51, 763779.

    • Search Google Scholar
    • Export Citation
  • Smith, P. L., 1984: Equivalent radar reflectivity factors for snow and ice particles. J. Climate Appl. Meteor., 23, 12581260.

  • Stewart, R. E., and R. Crawford, 1995: Some characteristics of the precipitation formed within winter storms over eastern Newfoundland. Atmos. Res., 36, 1737.

    • Search Google Scholar
    • Export Citation
  • Thériault, J. M., and R. E. Stewart, 2010: A parameterization of the microphysical processes forming many types of winter precipitation. J. Atmos. Sci., 67, 14921508.

    • Search Google Scholar
    • Export Citation
  • Thériault, J. M., R. E. Stewart, J. A. Milbrandt, and M. K. Yau, 2006: On the simulation of winter precipitation types. J. Geophys. Res., 111, D18202, doi:10.1029/2005JD006665.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and V. Chandrasekar, 2009: Algorithm for estimation of the specific differential phase. J. Atmos. Oceanic Technol., 26, 25652578.

    • Search Google Scholar
    • Export Citation
  • Zerr, R., 1997: Freezing rain: An observational and theoretical study. J. Appl. Meteor., 36, 16471661.

  • Zrnić, D. S., and A. V. Ryzhkov, 1999: Polarimetry for weather surveillance radars. Bull. Amer. Meteor. Soc., 80, 389406.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 344 166 11
PDF Downloads 370 148 32

A Dual-Polarization Radar Signature of Hydrometeor Refreezing in Winter Storms

View More View Less
  • 1 Cooperative Institute for Mesoscale Meteorological Studies, the University of Oklahoma, and NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma
Restricted access

Abstract

Polarimetric radar measurements in winter storms that produce ice pellets have revealed a unique signature that is indicative of ongoing hydrometeor refreezing. This refreezing signature is observed within the low-level subfreezing air as an enhancement of differential reflectivity ZDR and specific differential phase KDP and a decrease of radar reflectivity factor at horizontal polarization ZH and copolar correlation coefficient ρhv. It is distinct from the overlying melting-layer “brightband” signature and suggests that unique microphysical processes are occurring within the layer of hydrometeor refreezing. The signature is analyzed for four ice-pellet cases in central Oklahoma as observed by two polarimetric radars. A statistical analysis is performed on the characteristics of the refreezing signature for a case of particularly long duration. Several hypotheses are presented to explain the appearance of the signature, along with a summary of the pros and cons for each. It is suggested that preferential freezing of small drops and local ice generation are plausible mechanisms for the appearance of the ZDR and KDP enhancements. Polarimetric measurements and scattering calculations are used to retrieve microphysical information to explore the validity of the hypotheses. The persistence and repetitiveness of the signature suggest its potential use in operational settings to diagnose the transition between freezing rain and ice pellets.

Current affiliation: Advanced Study Program, National Center for Atmospheric Research,+ Boulder, Colorado.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Dr. Matthew Kumjian, NCAR, P.O. Box 3000, Boulder, CO 80301. E-mail: kumjian@ucar.edu

Abstract

Polarimetric radar measurements in winter storms that produce ice pellets have revealed a unique signature that is indicative of ongoing hydrometeor refreezing. This refreezing signature is observed within the low-level subfreezing air as an enhancement of differential reflectivity ZDR and specific differential phase KDP and a decrease of radar reflectivity factor at horizontal polarization ZH and copolar correlation coefficient ρhv. It is distinct from the overlying melting-layer “brightband” signature and suggests that unique microphysical processes are occurring within the layer of hydrometeor refreezing. The signature is analyzed for four ice-pellet cases in central Oklahoma as observed by two polarimetric radars. A statistical analysis is performed on the characteristics of the refreezing signature for a case of particularly long duration. Several hypotheses are presented to explain the appearance of the signature, along with a summary of the pros and cons for each. It is suggested that preferential freezing of small drops and local ice generation are plausible mechanisms for the appearance of the ZDR and KDP enhancements. Polarimetric measurements and scattering calculations are used to retrieve microphysical information to explore the validity of the hypotheses. The persistence and repetitiveness of the signature suggest its potential use in operational settings to diagnose the transition between freezing rain and ice pellets.

Current affiliation: Advanced Study Program, National Center for Atmospheric Research,+ Boulder, Colorado.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Dr. Matthew Kumjian, NCAR, P.O. Box 3000, Boulder, CO 80301. E-mail: kumjian@ucar.edu
Save