• Ackerman, S. A., W. L. Smith, J. D. Spinhirne, and H. E. Revercomb, 1990: The 27–28 October 1986 FIRE IFO cirrus case study: Spectral properties of cirrus clouds in the 8–12 μm window. Mon. Wea. Rev., 118, 23772388.

    • Search Google Scholar
    • Export Citation
  • Ackerman, S. A., W. L. Smith, A. D. Collard, X. L. Ma, H. E. Revercomb, and R. O. Knuteson, 1995: Cirrus cloud properties derived from High Spectral Resolution Infrared Spectrometry during FIRE II. Part II: Aircraft HIS results. J. Atmos. Sci., 52, 42464263.

    • Search Google Scholar
    • Export Citation
  • Bugliaro, L., T. Zinner, C. Keil, B. Mayer, R. Hollmann, M. Reuter, and W. Thomas, 2011: Validation of cloud property retrievals with simulated satellite radiances: A case study for SEVIRI. Atmos. Chem. Phys., 11, 56035624, doi:10.5194/acp-11-5603-2011.

    • Search Google Scholar
    • Export Citation
  • Chiriaco, M., H. Chepfer, V. Noel, A. Delaval, M. Haeffelin, P. Dubuisson, and P. Yang, 2004: Improving retrievals of cirrus cloud particle size coupling lidar and three-channel radiometric techniques. Mon. Wea. Rev., 132, 16841700.

    • Search Google Scholar
    • Export Citation
  • Corlay, G., M.-C. Arnolfo, T. Bret-Dibat, A. Lifermann, and J. Pelon, 2000: The Infrared Imaging Radiometer for PICASSO-CENA., CNES Tech. Doc., 14 pp. [Available online at http://smsc.cnes.fr/CALIPSO/IIR_ICSO00_S2-06.pdf.]

  • Dubuisson, P., V. Giraud, O. Chomette, H. Chepfer, and J. Pelon, 2005: Fast radiative transfer modeling for infrared imaging radiometry. J. Quant. Spectrosc. Radiat. Transfer, 95 (2), 201220.

    • Search Google Scholar
    • Export Citation
  • Dubuisson, P., V. Giraud, J. Pelon, B. Cadet, and P. Yang, 2008: Sensitivity of thermal infrared radiation at the top of the atmosphere and the surface to ice cloud microphysics. J. Appl. Meteor. Climatol., 47, 25452560.

    • Search Google Scholar
    • Export Citation
  • Duda, D. P., J. D. Spinhirne, and W. D. Hart, 1998: Retrieval of contrail microphysical properties during SUCCESS by the split-window method. Geophys. Res. Lett., 25, 11491152.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., and J. A. Curry, 1992: A parameterization of ice cloud optical properties for climate models. J. Geophys. Res., 97 (D4), 38313836.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., 1996: An accurate parameterization of the solar radiative properties of cirrus clouds for climate models. J. Climate, 9, 20582082.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., and K. N. Liou, 1993: Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50, 20082025.

  • Fu, Q., P. Yang, and W. B. Sun, 1998: An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models. J. Climate, 11, 22232237.

    • Search Google Scholar
    • Export Citation
  • Garnier, A., J. Pelon, P. Dubuisson, M. Faivre, O. Chomette, N. Pascal, and D. P. Kratz, 2012: Retrieval of cloud properties using CALIPSO Imaging Infrared Radiometer. Part I: Effective emissivity and optical depth. J. Appl. Meteor. Climatol., 51, 14071425.

    • Search Google Scholar
    • Export Citation
  • Giraud, V., J. C. Buriez, Y. Fouquart, F. Parol, and G. Sèze, 1997: Large-scale analysis of cirrus clouds from AVHRR data: Assessment of both a microphysical index and the cloud-top temperature. J. Appl. Meteor., 36, 664675.

    • Search Google Scholar
    • Export Citation
  • Guignard, A., C. J. Stubenrauch, A. J. Baran, and R. Armante, 2012: Bulk microphysical properties of semi-transparent cirrus from AIRS: A six year global climatology and statistical analysis in synergy with geometrical profiling data from CloudSat-CALIPSO. Atmos. Chem. Phys., 12, 503525, doi:10.5194/acp-12-503-2012.

    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., and M. J. Pavolonis, 2009: Gazing at cirrus clouds for 25 years through a split window. Part I: Methodology. J. Appl. Meteor. Climatol., 48, 11001116.

    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., M. J. Pavolonis, R. E. Holz, B. A. Baum, and S. Berthier, 2010: Using CALIPSO to explore the sensitivity to cirrus height in the infrared observations from NPOESS/VIIRS and GOES-R/ABI. J. Geophys. Res., 115, D00H20, doi:10.1029/2009JD012152.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., S. Matrosov, and B. Baum, 2003: Ice water path-optical depth relationships for cirrus and deep stratiform ice cloud layers. J. Appl. Meteor., 42, 13691390.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., D. Winker, and G.-J. van Zadelhoff, 2005: Extinction-ice water content-effective radius algorithms for CALIPSO. Geophys. Res. Lett., 32, L10807, doi:10.1029/2005GL022742.

    • Search Google Scholar
    • Export Citation
  • Inoue, T., 1985: On the temperature and effective emissivity determination of semitransparent cirrus clouds by bi-spectral measurements in the 10-μm window region. J. Meteor. Soc. Japan, 63, 8898.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., S. Iacobellis, and R. C. J. Somerville, 2003: SCM simulations of tropical ice clouds using observationally based parameterizations of microphysics. J. Climate, 16, 16431664.

    • Search Google Scholar
    • Export Citation
  • Mioche, G., D. Josset, J.-F. Gayet, J. Pelon, A. Garnier, A. Minikin, and A. Schwarzenboeck, 2010: Validation of the CALIPSO-CALIOP extinction coefficients from in situ observations in midlatitude cirrus clouds during the CIRCLE-2 experiment. J. Geophys. Res., 115, D00H25, doi:10.1029/2009JD012376.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 2002: Effective diameter in radiation transfer: General definition, applications, and limitations. J. Atmos. Sci., 59, 23302346.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., and M. D. King, 1990: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory. J. Atmos. Sci., 47, 18781893.

    • Search Google Scholar
    • Export Citation
  • Parol, F., J. C. Buriez, G. Brogniez, and Y. Fouquart, 1991: Information content of AVHRR channels 4 and 5 with respect to the effective radius of cirrus cloud particles. J. Appl. Meteor., 30, 973984.

    • Search Google Scholar
    • Export Citation
  • Pavolonis, M. J., 2010: Advances in extracting cloud composition information from spaceborne infrared radiances—A robust alternative to brightness temperatures. Part I: Theory. J. Appl. Meteor. Climatol., 49, 19922012.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41, 459473.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic, 954 pp.

  • Rädel, G., C. J. Stubenrauch, R. Holz, and D. L. Mitchell, 2003: Retrieval of effective ice crystal size in the infrared: Sensitivity study and global measurements from TIROS-N Operational Vertical Sounder. J. Geophys. Res., 108, 4281, doi:10.1029/2002JD002801.

    • Search Google Scholar
    • Export Citation
  • Roebeling, R. A., A. J. Feijt, and P. Stammes, 2006: Cloud property retrievals for climate monitoring: implications of differences between Spinning Enhanced Visible and Infrared Imager (SEVIRI) on Meteosat-8 and Advanced Very High Resolution Radiometer (AVHRR) on NOAA-17. J. Geophys. Res., 111, D20210, doi:10.1029/2005JD006990.

    • Search Google Scholar
    • Export Citation
  • Sourdeval, O., and Coauthors, 2012: Validation of IIR/CALIPSO level 1 measurements by comparison with collocated airborne observations during CIRCLE-2 and Biscay ‘08 campaigns. J. Atmos. Oceanic Technol., 29, 653667.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 1978: Radiation profiles in extended water clouds. II: Parameterization schemes. J. Atmos. Sci., 35, 21232132.

  • Stubenrauch, C. J., R. Holz, A. Chédin, D. L. Mitchell, and A. J. Baran, 1999: Retrieval of cirrus ice crystal sizes from 8.3 and 11.1 μm emissivities determined by the improved initialization inversion of TIROS-N Operational Vertical Sounder observations. J. Geophys. Res., 104 (D24), 31 793–31 808.

    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C. J., S. Cros, A. Guignard, and N. Lamquin, 2010: A 6-year global cloud climatology from the Atmospheric InfraRed Sounder AIRS and a statistical analysis in synergy with CALIPSO and CloudSat. Atmos. Chem. Phys., 10, 71977214.

    • Search Google Scholar
    • Export Citation
  • Wang, C., P. Yang, B. A. Baum, S. Platnick, A. K. Heidinger, Y. Hu, and R. E. Holz, 2011: Retrieval of ice cloud optical thickness and effective particle size using a fast infrared radiative transfer model. J. Appl. Meteor. Climatol., 50, 22832297.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G., 1984: Optical constants of ice from the ultraviolet to the microwave. Appl. Opt., 23, 12061225.

  • Warren, S. G., and R. E. Brandt, 2008: Optical constants of ice from the ultraviolet to the microwave: A revised compilation. J. Geophys. Res., 113, D14220, doi:10.1029/2007JD009744.

    • Search Google Scholar
    • Export Citation
  • Yang, P., H. Wei, H. L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu, 2005: Scattering and absorption property database for non-spherical ice particles in the near-through far-infrared spectral region. Appl. Opt., 44, 55125523.

    • Search Google Scholar
    • Export Citation
  • Yue, Q., K. N. Liou, S. C. Ou, B. H. Kahn, P. Yang, and G. G. Mace, 2007: Interpretation of AIRS data in thin cirrus atmospheres based on a fast radiative transfer model. J. Atmos. Sci., 64, 38273842.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 163 97 9
PDF Downloads 191 112 64

Retrieval of Cloud Properties Using CALIPSO Imaging Infrared Radiometer. Part II: Effective Diameter and Ice Water Path

View More View Less
  • 1 * Science Systems and Applications, Inc., Hampton, Virginia
  • | 2 NASA Langley Research Center, Hampton, Virginia
  • | 3 Laboratoire Atmosphères, Milieux, Observations Spatiales, UPMC-UVSQ-CNRS, Paris, France
  • | 4 Laboratoire d'Optique Atmosphérique, Université de Lille 1, Lille, France
  • | 5 Department of Atmospheric Sciences, Texas A&M University, College Station, Texas
  • | 6 ** Laboratoire de Météorologie Dynamique, École Polytechnique, Palaiseau, France
  • | 7 Hygeos, Cloud–Aerosol–Water–Radiation Interactions (ICARE), Lille, France
Restricted access

Abstract

This paper describes the version-3 level-2 operational analysis of the Imaging Infrared Radiometer (IIR) data collected in the framework of the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission to retrieve cirrus cloud effective diameter and ice water path in synergy with the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) collocated observations. The analysis uses a multisensor split-window technique relying on the concept of microphysical index applied to the two pairs of channels (12.05, 10.6 μm) and (12.05, 8.65 μm) to retrieve cirrus microphysical properties (effective diameter, ice water path) at 1-km pixel resolution. Retrievals are performed for three crystal families selected from precomputed lookup tables identified as representative of the main relationships between the microphysical indices. The uncertainties in the microphysical indices are detailed and quantified, and the impact on the retrievals is simulated. The possible biases have been assessed through consistency checks that are based on effective emissivity difference. It has been shown that particle effective diameters of single-layered cirrus clouds can be retrieved, for the first time, down to effective emissivities close to 0.05 when accurate measured background radiances can be used and up to 0.95 over ocean and land, as well as over low opaque clouds. The retrieval of the ice water path from the IIR effective optical depth and the effective diameter is discussed. Taking advantage of the cloud boundaries retrieved by CALIOP, an IIR power-law relationship between ice water content and extinction is established for four temperature ranges and shown to be consistent with previous results on average for the chosen dataset.

Corresponding author address: Anne Garnier, SSAI, 1 Enterprise Parkway, Suite 200, Hampton, VA 23666. E-mail: anne.garnier@latmos.ipsl.fr

Abstract

This paper describes the version-3 level-2 operational analysis of the Imaging Infrared Radiometer (IIR) data collected in the framework of the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission to retrieve cirrus cloud effective diameter and ice water path in synergy with the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) collocated observations. The analysis uses a multisensor split-window technique relying on the concept of microphysical index applied to the two pairs of channels (12.05, 10.6 μm) and (12.05, 8.65 μm) to retrieve cirrus microphysical properties (effective diameter, ice water path) at 1-km pixel resolution. Retrievals are performed for three crystal families selected from precomputed lookup tables identified as representative of the main relationships between the microphysical indices. The uncertainties in the microphysical indices are detailed and quantified, and the impact on the retrievals is simulated. The possible biases have been assessed through consistency checks that are based on effective emissivity difference. It has been shown that particle effective diameters of single-layered cirrus clouds can be retrieved, for the first time, down to effective emissivities close to 0.05 when accurate measured background radiances can be used and up to 0.95 over ocean and land, as well as over low opaque clouds. The retrieval of the ice water path from the IIR effective optical depth and the effective diameter is discussed. Taking advantage of the cloud boundaries retrieved by CALIOP, an IIR power-law relationship between ice water content and extinction is established for four temperature ranges and shown to be consistent with previous results on average for the chosen dataset.

Corresponding author address: Anne Garnier, SSAI, 1 Enterprise Parkway, Suite 200, Hampton, VA 23666. E-mail: anne.garnier@latmos.ipsl.fr
Save