• Anderson, D. E., S. B. Verma, and N. J. Rosenberg, 1984: Eddy correlation measurements of CO2, latent heat and sensible heat fluxes over a crop surface. Bound.-Layer Meteor., 29, 263272.

    • Search Google Scholar
    • Export Citation
  • Aubinet, M., and Coauthors, 2000: Estimates of the annual net carbon and water exchange of forests: The EUROFLUX methodology. Adv. Ecol. Res., 30, 113175.

    • Search Google Scholar
    • Export Citation
  • Barr, A. G., K. Morgenstern, T. A. Black, J. H. McCaughey, and Z. Nesic, 2006: Surface energy balance closure by the eddy-covariance method above three boreal forest stands and implications for the measurement of the CO2 flux. Agric. For. Meteor., 140, 322337.

    • Search Google Scholar
    • Export Citation
  • Chen, S. P., J. Q. Chen, G. H. Lin, W. L. Zhang, H. X. Miao, L. Wei, J. H. Huang, and X. G. Han, 2009: Energy balance and partition in Inner Mongolia steppe ecosystems with different land use types. Agric. For. Meteor., 149, 18001809.

    • Search Google Scholar
    • Export Citation
  • Cunha, A. P. M. A., R. C. S. Alvalá, F. W. S. Correia, and P. Y. Kubota, 2008: Calibration of the “simplified simple biosphere model-SSiB” for the Brazilian Northeast Caatinga. Current Problems in Atmospheric Radiation (IRS 2008): Proceedings of the International Radiation Symposium, AIP Conference Proceedings 1100, American Institute of Physics, 641–644.

  • Dai, Y., and Coauthors, 2001: Common Land Model: Technical documentation and user’s guide. 69 pp. [Available online at http://igwmc.mines.edu/short-course/ParFlow/clm_user_guide.pdf.]

  • Dai, Y., and Coauthors, 2003: The Common Land Model. Bull. Amer. Meteor. Soc., 84, 10131023.

  • Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan, 2002: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput., 2, 182197.

    • Search Google Scholar
    • Export Citation
  • Delire, C., and J. A. Foley, 1999: Evaluating the performance of a land surface/ecosystem model with biophysical measurements from contrasting environments. J. Geophys. Res., 104, 16 89516 909.

    • Search Google Scholar
    • Export Citation
  • Demarty, J., C. Ottlé, I. Braud, A. Olioso, J. P. Frangi, L. A. Bastidas, and H. V. Gupta, 2004: Using a multiobjective approach to retrieve information on surface properties used in a SVAT model. J. Hydrol., 287, 214236.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta Model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • El Maayar, M., D. T. Price, C. Delire, J. A. Foley, T. A. Black, and B. Bessemoulin, 2001: Validation of the integrated biosphere simulator over Canadian deciduous and coniferous boreal forest stands. J. Geophys. Res., 106, 14 33914 355.

    • Search Google Scholar
    • Export Citation
  • Engeland, K., I. Braud, L. Gottschalk, and E. Leblois, 2006: Multi-objective regional modelling. J. Hydrol., 327, 339351.

  • Fensholt, R., I. Sandholt, and R. Michael, 2004: Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements. Remote Sens. Environ., 91, 490507.

    • Search Google Scholar
    • Export Citation
  • Foley, J. A., I. C. Prentice, N. Ramankutty, S. Levis, D. Pollard, S. Sitch, and A. Haxeltine, 1996: An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochem. Cycles, 10, 603628.

    • Search Google Scholar
    • Export Citation
  • Foley, J. A., C. J. Kucharik, and D. Polzin, 2005: Integrated Biosphere Simulator Model (IBIS), version 2.5. Model product, Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, TN. [Available online at http://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=808.]

  • Gao, Z., R. Horton, and H. P. Liu, 2010: Impact of wave phase difference between soil surface heat flux and soil surface temperature on soil surface energy balance closure. J. Geophys. Res., 115, D16112, doi:10.1029/2009JD013278.

    • Search Google Scholar
    • Export Citation
  • Gu, J., E. A. Smith, and J. D. Merritt, 1999: Testing energy balance closure with GOES-retrieved net radiation and in situ measured eddy correlation fluxes in BOREAS. J. Geophys. Res., 104, 27 88127 893.

    • Search Google Scholar
    • Export Citation
  • Güntner, A., 2002: Large-scale hydrological modelling in the semi-arid north-east of Brazil. Potsdam Institute for Climate Impact Research PIK-Rep. 77, 128 pp.

  • Guo, J., B. Lingen, and D. Yongjue, 2008: Multiple time scale characteristics of surface energy balance during the growth season of corn. Sci. China, 38D, 11301111.

    • Search Google Scholar
    • Export Citation
  • Gupta, H. V., S. Sorooshian, and P. O. Yapo, 1998: Toward improved calibration of hydrologic models: Multiple and non-commensurable measures of information. Water Resour. Res., 34, 751763.

    • Search Google Scholar
    • Export Citation
  • Gupta, H. V., L. A. Bastidas, S. Sorooshian, W. J. Shuttleworth, and Z. L. Yang, 1999a: Parameter estimation of a land surface scheme using multicriteria methods. J. Geophys. Res., 104, 19 49119 503.

    • Search Google Scholar
    • Export Citation
  • Gupta, H. V., S. Sorooshian, and P. O. Yapo, 1999b: Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. J. Hydrol. Eng., 4 (2), 135143.

    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., and L. Heller, 1977: Dynamics of climatic hazards in northeast Brazil. Quart. J. Roy. Meteor. Soc., 103, 7792.

  • Hastings, S. J., W. C. Muhlia, and A. Melo, 2005: Diurnal, seasonal and annual variation in the net ecosystem CO2 exchange of a desert shrub community (sarcocaulescent) in Baja California, Mexico. Global Change Biol., 11, 927939.

    • Search Google Scholar
    • Export Citation
  • Hogue, T., L. Bastidas, H. Gupta, S. Soroshian, K. Mitchell, and W. Emmerich, 2005: Evaluation and transferability of the Noah land surface model in semiarid environments. J. Hydrometeor., 6, 6884.

    • Search Google Scholar
    • Export Citation
  • Houser, P. R., H. V. Gupta, W. J. Schuttleworth, and J. S. Famiglietti, 2001: Multiobjective calibration and sensitivity of a distributed land surface water and energy balance model. J. Geophys. Res., 106, 33 42133 434.

    • Search Google Scholar
    • Export Citation
  • Kahan, D., Y. Xue, and S. Allen, 2006: The impact of vegetation/soil parameters in simulations of surface energy and water balance in the semi-arid Sahel area: A case study using SEBEX and HAPEX-Sahel data. J. Hydrol., 320, 238259.

    • Search Google Scholar
    • Export Citation
  • Kucharik, C. J., and Coauthors, 2000: Testing the performance of a dynamic global ecosystem model: Water balance, carbon balance and vegetation structure. Global Biogeochem. Cycles, 14, 795825.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and Coauthors, 2011: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Syst., 3, M03001, doi:10.1029/2011MS000045.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1998: Flux sampling errors for aircraft and towers. J. Atmos. Oceanic Technol., 15, 416429.

  • Mares, M. A., M. R. Willig, and T. Lacher, 1985: The Brazilian caatinga in South American zoogeography: Tropical mammals in a dry region. J. Biogeogr., 12, 5769.

    • Search Google Scholar
    • Export Citation
  • Moore, C. J., 1986: Frequency response corrections for eddy correlation systems. Bound.-Layer Meteor., 37, 1735.

  • Morris, M. D., 1991: Factorial sampling plans for preliminary computational experiments. Technometrics, 33 (2), 161174.

  • Myneni, R., Y. Knyazikhin, J. Glassy, P. Votava, and N. Shabanov, 2003: User’s guide: FPAR, LAI (ESDT: MOD15A2) 8-day composite NASA MODIS land algorithm. Terra MODIS Land Team, 17 pp. [Available online at http://cybele.bu.edu/modismisr/products/modis/userguide.pdf.]

  • Nobre, P., and Coauthors, 2013: Climate simulation and change in the Brazilian climate model. J. Climate, 26 , 6716 6732.

  • Oliveira, M. B. L., A. J. B. Santos, A. O. Manzi, R. C. S. Alvalá, M. F. Correia, and M. S. B. Moura, 2006: Trocas de energia e fluxo de carbono entre a vegetação de caatinga e atmosfera no nordeste brasileiro (Exchanges of energy and carbon flux between caatinga vegetation and the atmosphere in northeastern Brazil). Rev. Bras. Meteor., 21, 166174.

    • Search Google Scholar
    • Export Citation
  • Oncley, S. P., and Coauthors, 2007: The energy balance experiment EBEX-2000. Part I: Overview and energy balance. Bound.-Layer Meteor., 123, 128.

    • Search Google Scholar
    • Export Citation
  • Oyama, M. D., and C. A. Nobre, 2004: Climatic consequences of a large-scale desertification in northeast Brazil: A GCM simulation study. J. Climate, 17, 32033213.

    • Search Google Scholar
    • Export Citation
  • Prentice, I. C., W. Cramer, S. P. Harrison, R. Leemans, R. A. Monserud, and A. M. Solomon, 1992: A global biome model based on plant physiology and dominance, soil properties, and climate. J. Biogeogr., 19, 117134.

    • Search Google Scholar
    • Export Citation
  • Rocha, H. R., C. A. Nobre, J. P. Bonatti, I. R. Wright, and P. J. Sellers, 1996: A vegetation atmosphere interaction study for Amazonian deforestation using field data and a ‘single column’ model. Quart. J. Roy. Meteor. Soc., 122, 567594.

    • Search Google Scholar
    • Export Citation
  • Rotenberg, E., and D. Yakir, 2011: Distinct patterns of changes in surface energy budget associated with forestation in the semiarid region. Global Change Biol., 17, 15361548.

    • Search Google Scholar
    • Export Citation
  • Schotanus, P., T. M. Nieuwstadt, and H. A. R. De Bruin, 1983: Temperature measurement with sonic anemometer and its application to heat and moisture fluxes. Bound.-Layer Meteor., 26, 8193.

    • Search Google Scholar
    • Export Citation
  • Schüttemeyer, D., 2005: The Surface Energy Balance over Drying Semi-Arid Terrain in West Africa. University of Wageningen, 154 pp.

  • Scott, R. L., T. E. Huxman, D. G. Williams, and D. C. Goodrich, 2006: Ecohydrological impacts of woody plant encroachment: Seasonal patterns of water and carbon dioxide exchange within a semiarid riparian environment. Global Change Biol., 12, 311324.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., W. J. Shuttleworth, and J. Dorman, 1989: Calibrating the simple biosphere model for Amazonian tropical forest using field and remote sensing data. Part I: Average calibration with field data. J. Appl. Meteor., 28, 727759.

    • Search Google Scholar
    • Export Citation
  • Thompson, S. L., and D. Pollard, 1995a: A global climate model (GENESIS) with a land-surface-transfer scheme (LSX). Part I: Present climate simulation. J. Climate, 8, 732761.

    • Search Google Scholar
    • Export Citation
  • Thompson, S. L., and D. Pollard, 1995b: A global climate model (GENESIS) with a land-surface-transfer scheme (LSX). Part II: CO2 sensitivity. J. Climate, 8, 11041121.

    • Search Google Scholar
    • Export Citation
  • Varejão, C. G., M. H. Costa, and C. C. S. Camargos, 2011: A multi-objective hierarchical calibration procedure for land surface/ecosystem models. Inverse Probl. Sci. Eng., 1, 130.

    • Search Google Scholar
    • Export Citation
  • Veenendaal, E. M., O. Kolle, and J. Lloyd, 2004: Seasonal variation in energy fluxes and carbon dioxide exchange for a broad-leaved semi-arid savanna mopane woodland in southern Africa. Global Change Biol., 10, 318328.

    • Search Google Scholar
    • Export Citation
  • Verma, A. B., D. D. Baldocchi, D. E. Anderson, D. R. Matt, and R. J. Clement, 1986: Eddy fluxes of CO2, water vapor, and sensible heat over a deciduous forest. Bound.-Layer Meteor., 36, 7191.

    • Search Google Scholar
    • Export Citation
  • Vrugt, J. A., H. V. Gupta, L. A. Bastidas, W. Bouten, and S. Sorooshian, 2003: Effective and efficient algorithm for multiobjective optimization of hydrologic models. Water Resour. Res., 39, 1214, doi:10.1029/2002WR001746.

    • Search Google Scholar
    • Export Citation
  • Wang, D., Y. Chen, and X. Cai, 2009: State and parameter estimation of hydrologic models using the constrained ensemble Kalman filter. Water Resour. Res., 45, W11416, doi:10.1029/2008WR007401.

    • Search Google Scholar
    • Export Citation
  • Williams, D. G., and Coauthors, 2004: Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques. Agric. For. Meteor., 125, 241258.

    • Search Google Scholar
    • Export Citation
  • Wilson, K. B., and Coauthors, 2002: Energy balance closure at FLUXNET sites. Agric. For. Meteor., 113, 223243.

  • Xiao, X., H. C. Zuo, Q. D. Yang, S. J. Wang, J. W. Chen, B. L. Chen, and B. D. Zhang, 2012: On the factors influencing surface-layer energy balance closure and their seasonal variability over semi-arid loess plateau of Northwest China. Hydrol. Earth Syst. Sci., 8, 555594.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., P. J. Sellers, J. L. Kinter, and J. Shukla, 1991: A simplified biosphere model for global climate studies. J. Climate, 4, 345364.

    • Search Google Scholar
    • Export Citation
  • Yapo, P. O., H. V. Gupta, and S. Sorooshian, 1998: Multi-objective global optimization for hydrologic models. J. Hydrol., 204, 8397.

  • Yue, P., Q. Zhang, S. Niu, H. Cheng, and X. Wang, 2011: Effects of the soil heat flux estimates on surface energy balance closure over a semi-arid grassland. Acta Meteor. Sin., 25, 774782.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 203 106 8
PDF Downloads 136 84 15

Calibration and Validation of the Integrated Biosphere Simulator (IBIS) for a Brazilian Semiarid Region

View More View Less
  • 1 Earth System Science Center, National Institute for Space Research, São José dos Campos, Brazil
  • | 2 Brazilian Center for Monitoring and Warning of Natural Disasters, São José dos Campos, Brazil
  • | 3 Earth System Science Center, National Institute for Space Research, São José dos Campos, Brazil
  • | 4 University of São Paulo, São Paulo, Brazil
  • | 5 Federal University of Viçosa, Viçosa, Brazil
Restricted access

Abstract

The reliability of predictions from climate and weather models is linked to an adequate representation of the land surface processes. To evaluate performance and to improve predictions, land surface models are calibrated against observed data. Despite an extensive literature describing methods of land surface model calibration, few studies have applied a calibration method for semiarid natural vegetation, especially for the semiarid northeast of Brazil, which presents caatinga as its natural vegetation. Caatinga is a highly dynamic ecosystem with the physics at the land surface–atmosphere interface still poorly understood. Therefore, in this study a multiobjective hierarchical method, which provides means to estimate optimal values of the model parameters through calibration, is evaluated. This method is applied to caatinga by using the Integrated Biosphere Simulator (IBIS). Results demonstrated that the calibrated set of vegetation parameters produced a considerably different energy balance from the default parameters. In general, the model was able to simulate the partition of the available energy into sensible and latent heat fluxes when the calibrated parameters were used. The IBIS model was not able to capture short-term, intense changes in latent heat flux from a dry condition to a wetter condition, however, even when the new set of calibrated parameters was used. Therefore, the parameter optimization may not be sufficient if processes are missing or misrepresented. This study is one of the first to understand the physics at the land surface–atmosphere interface in the caatinga ecosystem and to evaluate the ability of the IBIS model to represent the biophysical interactions in this important ecosystem.

Corresponding author address: Ana Paula M. A. Cunha, Earth System Science Center, National Institute for Space Research, Av dos Astronautas 1758, Jd. Granja, CEP: 12227-010, São José dos Campos—SP, Brazil. E-mail: apaulama2011@gmail.com

Abstract

The reliability of predictions from climate and weather models is linked to an adequate representation of the land surface processes. To evaluate performance and to improve predictions, land surface models are calibrated against observed data. Despite an extensive literature describing methods of land surface model calibration, few studies have applied a calibration method for semiarid natural vegetation, especially for the semiarid northeast of Brazil, which presents caatinga as its natural vegetation. Caatinga is a highly dynamic ecosystem with the physics at the land surface–atmosphere interface still poorly understood. Therefore, in this study a multiobjective hierarchical method, which provides means to estimate optimal values of the model parameters through calibration, is evaluated. This method is applied to caatinga by using the Integrated Biosphere Simulator (IBIS). Results demonstrated that the calibrated set of vegetation parameters produced a considerably different energy balance from the default parameters. In general, the model was able to simulate the partition of the available energy into sensible and latent heat fluxes when the calibrated parameters were used. The IBIS model was not able to capture short-term, intense changes in latent heat flux from a dry condition to a wetter condition, however, even when the new set of calibrated parameters was used. Therefore, the parameter optimization may not be sufficient if processes are missing or misrepresented. This study is one of the first to understand the physics at the land surface–atmosphere interface in the caatinga ecosystem and to evaluate the ability of the IBIS model to represent the biophysical interactions in this important ecosystem.

Corresponding author address: Ana Paula M. A. Cunha, Earth System Science Center, National Institute for Space Research, Av dos Astronautas 1758, Jd. Granja, CEP: 12227-010, São José dos Campos—SP, Brazil. E-mail: apaulama2011@gmail.com
Save