• Ashcroft, P., and F. J. Wentz, 2000: Algorithm Theoretical Basis Document AMSR level 2A algorithm. RSS Tech. Rep. 121599B-1, 27 pp.

  • Battan, L. J., 1973: Radar Observation of the Atmosphere. TechBooks, 324 pp.

  • Bauer, P., and P. Schluessel, 1993: Rainfall, total water, ice water and water vapor over sea from polarized microwave simulations and Special Sensor Microwave/Imager data. J. Geophys. Res., 98 (D11), 20 73720 759.

    • Search Google Scholar
    • Export Citation
  • Biggerstaff, M. I., E.-K. Seo, S. M. Hristova-Veleva, and K.-Y. Kim, 2006: Impact of cloud model microphysics on passive microwave retrievals of cloud properties. Part I: Model comparison using EOF analyses. J. Appl. Meteor. Climatol., 45, 930954.

    • Search Google Scholar
    • Export Citation
  • Chavas, D., and K. Emanuel, 2010: A QuikSCAT climatology of tropical cyclone size. Geophys. Res. Lett., 37, L18816, doi:10.1029/2010GL044558.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, M. H. Freilich, and R. F. Milliff, 2004: Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303, 978983.

    • Search Google Scholar
    • Export Citation
  • Cunningham, S. A., and Coauthors, 2007: Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science, 317, 935938, doi:10.1126/science.1141304.

    • Search Google Scholar
    • Export Citation
  • Grody, N. C., 1991: Classification of snow cover and precipitation using the Special Sensor Microwave Imager. J. Geophys. Res., 96, 74237435.

    • Search Google Scholar
    • Export Citation
  • Haddad, Z. S., D. A. Short, S. L. Durden, E. Im, S. Hensley, M. B. Grable, and R. A. Black, 1997: A new parameterization of the rain drop size distribution. IEEE Trans. Geosci. Remote Sens., 35, 532539.

    • Search Google Scholar
    • Export Citation
  • Hristova-Veleva, S. M., 2000: Impact of microphysical parameterizations on simulated storm evolution and remotely-sensed characteristics. Ph.D. thesis, Texas A&M University, 201 pp.

  • Huddleston, J. N., and B. W. Stiles, 2000: A multi-dimensional histogram rain flagging technique for SeaWinds on QuikSCAT. Proc. IGARSS 2000, Honolulu, HI, IEEE, Vol. 3, 1232–1234.

  • Jiang, C., L.-A. Thompson, and N. D. K. A. Kelly, 2008: Equatorial influence of QuikSCAT winds in an isopycnal ocean model compared to NCEP2 winds. Ocean Modell., 24, 6571.

    • Search Google Scholar
    • Export Citation
  • Keihm, S. J., M. A. Janssen, and C. Ruf, 1995: TOPEX/Poseidon Microwave Radiometer (TMR): III. Wet troposphere range correction algorithm and pre-launch error budget. IEEE Trans. Geosci. Remote Sens., 33, 147161.

    • Search Google Scholar
    • Export Citation
  • Kidd, C., 1998: On rainfall retrieval using polarization-corrected temperatures. Int. J. Remote Sens., 19, 981996.

  • Kummerow, C., 1993: On the accuracy of the Eddington approximation for radiative transfer in the microwave frequencies. J. Geophys. Res., 98, 27572765.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and L. Giglio, 1994: A passive microwave technique for estimating rainfall and vertical structure information from space. Part I: Algorithm description. J. Appl. Meteor., 33, 318.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., I. M. Hakkarinen, H. F. Pierce, and J. A. Weinman, 1991: Determination of precipitation profiles from airborne passive microwave radiometric measurements. J. Atmos. Oceanic Technol., 8, 148158.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. S. Olson, and L. Giglio, 1996: A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors. IEEE Trans. Geosci. Remote Sens., 34, 12131232.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2001: The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40, 18011820.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., P. Poyner, W. Berg, and J. Thomas-Stahle, 2004: The effects of rainfall inhomogeneity on climate variability of rainfall estimated from passive microwave sensors. J. Atmos. Oceanic Technol., 21, 624638.

    • Search Google Scholar
    • Export Citation
  • Liu, G., J. Curry, and R.-S. Sheu, 1995: Classification of clouds over the western equatorial Pacific Ocean using combined infrared and microwave satellite data. J. Geophys. Res., 100 (D7), 13 81113 826.

    • Search Google Scholar
    • Export Citation
  • Lovenduski, N. S., and N. Gruber, 2005: Impact of the southern annular mode on Southern Ocean circulation and biology. Geophys. Res. Lett., 32, L11603, doi:10.1029/2005GL022727.

    • Search Google Scholar
    • Export Citation
  • Mie, G., 1908: Beiträge zur Optik trüber Medien speziell kolloidaler Metallösungen (Contributions to the optics of turbid media, particularly of colloidal metal solutions). Ann. Phys., 330, 377445.

    • Search Google Scholar
    • Export Citation
  • Minobe, S., A. Kuwano-Yoshida, N. Komori, S.-P. Xie, and R. J. Small, 2008: Influence of the Gulf Stream on the troposphere. Nature, 452, 206209.

    • Search Google Scholar
    • Export Citation
  • Mugnai, A., and E. A. Smith, 1988: Radiative transfer to space through a precipitating cloud at multiple microwave frequencies. Part I: Model description. J. Appl. Meteor., 27, 10551073.

    • Search Google Scholar
    • Export Citation
  • Olson, W. S., C. D. Kummerow, Y. Hong, and W.-K. Tao, 1999: Atmospheric latent heating distributions in the tropics derived from satellite passive microwave radiometer measurements. J. Appl. Meteor., 38, 633664.

    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., D. B. Chelton, S. K. Esbensen, and F. J. Wentz, 2005: High-resolution satellite measurements of the atmospheric boundary layer response to SST perturbations over the Agulhas Return Current. J. Climate, 18, 27062723.

    • Search Google Scholar
    • Export Citation
  • Panegrossi, G., and Coauthors, 1998: Use of cloud model microphysics for passive microwave-based precipitation retrieval: Significance of consistency between model and measurement manifolds. J. Atmos. Sci., 55, 16441673.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., 1994a: Physical retrievals of over-ocean rain rate from multichannel microwave imagery. Part I: Theoretical characteristics of normalized polarization and scattering indices. Meteor. Atmos. Phys., 54, 7999.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., 1994b: Physical retrievals of over-ocean rain rate from multichannel microwave imagery. Part II: Algorithm implementation. Meteor. Atmos. Phys., 54, 101121.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., and K. B. Katsaros, 1992: Nimbus-7 SMMR precipitation observations calibrated against surface radar during TAMEX. J. Appl. Meteor., 31, 489505.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the “seeder–feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40, 11851206.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. R., and W.-K. Tao, 1993: Goddard Cumulus Ensemble Model. Part II: Applications for studying cloud precipitating processes and for NASA TRMM. Terr. Atmos. Ocean. Sci., 4, 73116.

    • Search Google Scholar
    • Export Citation
  • Smith, E. A., and A. Mugnai, 1988: Radiative transfer to space through a precipitating cloud at multiple microwave frequencies. Part II: Results and analysis. J. Appl. Meteor., 27, 10741091.

    • Search Google Scholar
    • Export Citation
  • Smith, E. A., A. Mugnai, H. J. Cooper, G. J. Tripoli, and X. Xiang, 1992: Foundations for statistical–physical precipitation retrieval from passive microwave satellite measurements. Part I: Brightness-temperature properties of a time-dependent cloud-radiation model. J. Appl. Meteor., 31, 506531.

    • Search Google Scholar
    • Export Citation
  • Smith, E. A., and Coauthors, 1998: Results of WetNet PIP-2 project. J. Atmos. Sci., 55, 14 8131536.

  • Spencer, R. W., H. M. Goodman, and R. E. Hood, 1989: Precipitation retrieval over land and ocean with SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6, 254273.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and C. D. Kummerow, 2007: The remote sensing of clouds and precipitation from space: A review. J. Atmos. Sci., 64, 37423765.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., J. Simpson, S. Lang, M. McCumber, R. Adler, and R. Penc, 1990: An algorithm to estimate the heating budget from vertical hydrometeor profiles. J. Appl. Meteor., 29, 12321244.

    • Search Google Scholar
    • Export Citation
  • Weinman, J. A., and R. Davies, 1978: Thermal microwave radiances from horizontally finite clouds of hydrometeors. J. Geophys. Res., 83, 30993107.

    • Search Google Scholar
    • Export Citation
  • Weng, F., and N. C. Grody, 1994: Retrieval of cloud liquid water using the Special Sensor Microwave Imager (SSM/I). J. Geophys. Res., 99, 25 53525 551.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., 1990: SBIR phase II report: West coast storm forecasting with SSM/I. RSS Tech. Rep. 033190, 378 pp. [Available from Remote Sensing Systems, 1101 College Avenue, Suite 220, Santa Rosa, CA 95404.]

  • Wentz, F. J., and R. W. Spencer, 1998: SSM/I rain retrievals within a unified all-weather ocean algorithm. J. Atmos. Sci., 55, 16131627.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., and T. Meissner, 2000: Algorithm Theoretical Basis Document: AMSR Ocean Algorithm. RSS Tech. Proposal 121599A-1, 44 pp.

  • Wilheit, T. T., A. T. C. Chang, M. S. V. Rao, E. B. Rodgers, and J. S. Theon, 1977: A satellite technique for quantitatively mapping rainfall rate over the oceans. J. Appl. Meteor., 16, 551560.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 79 26 2
PDF Downloads 46 16 0

Revealing the Winds under the Rain. Part I: Passive Microwave Rain Retrievals Using a New Observation-Based Parameterization of Subsatellite Rain Variability and Intensity—Algorithm Description

View More View Less
  • 1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
  • | 2 College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon
  • | 3 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
  • | 4 Hofstra University, Hempstead, New York
Restricted access

Abstract

Scatterometer ocean surface winds have been providing very valuable information to researchers and operational weather forecasters for over 10 years. However, the scatterometer wind retrievals are compromised when rain is present. Merely flagging all rain-affected areas removes the most dynamic and interesting areas from the wind analysis. Fortunately, the Advanced Earth Observing Satellite II (ADEOS-II) mission carried a radiometer [the Advanced Microwave Scanning Radiometer (AMSR)] and a scatterometer, allowing for independent, collocated retrievals of rain. The authors developed an algorithm that uses AMSR observations to estimate the rain inside the scatterometer beam. This is the first in a series of papers that describe their approach to providing rain estimation and correction to scatterometer observations. This paper describes the retrieval algorithm and evaluates it using simulated data. Part II will present its validation when applied to AMSR observations. This passive microwave rain retrieval algorithm addresses the issues of nonuniform beam filling and hydrometeor uncertainty in a novel way by 1) using a large number of soundings to develop the retrieval database, thus accounting for the geographically varying atmospheric parameters; 2) addressing the spatial inhomogeneity of rain by developing multiple retrieval databases with different built-in inhomogeneity and rain intensity, along with a “rain indicator” to select the most appropriate database for each observed scene; 3) developing a new cloud-versus-rain partitioning that allows the use of a variety of drop size distribution assumptions to account for some of the natural variability diagnosed from the soundings; and 4) retrieving atmospheric and surface parameters just outside the rainy areas, thus providing information about the environment to help decrease the uncertainty of the rain estimates.

Corresponding author address: Svetla M. Hristova-Veleva, Jet Propulsion Laboratory, Radar Science and Engineering, 4800 Oak Grove Dr., Pasadena, CA 91109. E-mail: svetla.veleva@jpl.nasa.gov

Abstract

Scatterometer ocean surface winds have been providing very valuable information to researchers and operational weather forecasters for over 10 years. However, the scatterometer wind retrievals are compromised when rain is present. Merely flagging all rain-affected areas removes the most dynamic and interesting areas from the wind analysis. Fortunately, the Advanced Earth Observing Satellite II (ADEOS-II) mission carried a radiometer [the Advanced Microwave Scanning Radiometer (AMSR)] and a scatterometer, allowing for independent, collocated retrievals of rain. The authors developed an algorithm that uses AMSR observations to estimate the rain inside the scatterometer beam. This is the first in a series of papers that describe their approach to providing rain estimation and correction to scatterometer observations. This paper describes the retrieval algorithm and evaluates it using simulated data. Part II will present its validation when applied to AMSR observations. This passive microwave rain retrieval algorithm addresses the issues of nonuniform beam filling and hydrometeor uncertainty in a novel way by 1) using a large number of soundings to develop the retrieval database, thus accounting for the geographically varying atmospheric parameters; 2) addressing the spatial inhomogeneity of rain by developing multiple retrieval databases with different built-in inhomogeneity and rain intensity, along with a “rain indicator” to select the most appropriate database for each observed scene; 3) developing a new cloud-versus-rain partitioning that allows the use of a variety of drop size distribution assumptions to account for some of the natural variability diagnosed from the soundings; and 4) retrieving atmospheric and surface parameters just outside the rainy areas, thus providing information about the environment to help decrease the uncertainty of the rain estimates.

Corresponding author address: Svetla M. Hristova-Veleva, Jet Propulsion Laboratory, Radar Science and Engineering, 4800 Oak Grove Dr., Pasadena, CA 91109. E-mail: svetla.veleva@jpl.nasa.gov
Save