Investigation of PR and TMI Version 6 and Version 7 Rainfall Algorithms in Landfalling Tropical Cyclones Relative to the NEXRAD Stage-IV Multisensor Precipitation Estimate Dataset

Joseph P. Zagrodnik Department of Earth and Environment, Florida International University, Miami, Florida

Search for other papers by Joseph P. Zagrodnik in
Current site
Google Scholar
PubMed
Close
and
Haiyan Jiang Department of Earth and Environment, Florida International University, Miami, Florida

Search for other papers by Haiyan Jiang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Rainfall estimates from versions 6 (V6) and 7 (V7) of the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) 2A25 and Microwave Imager (TMI) 2A12 algorithms are compared relative to the Next Generation Weather Radar (NEXRAD) Multisensor Precipitation Estimate stage-IV hourly rainfall product. The dataset consists of 252 TRMM overpasses of tropical cyclones from 2002 to 2010 within a 230-km range of southeastern U.S. Weather Surveillance Radar-1988 Doppler (WSR-88D) sites. All rainfall estimates are averaged to a uniform 1/7° square grid. The grid boxes are also divided by their TMI surface designation (land, ocean, or coast). A detailed statistical analysis is undertaken to determine how changes to the TRMM rainfall algorithms in the latest version (V7) are influencing the rainfall retrievals relative to ground reference data. Version 7 of the PR 2A25 is the best-performing algorithm over all three surface types. Over ocean, TMI 2A12 V7 is improved relative to V6 at high rain rates. At low rain rates, the new ocean TMI V7 probability-of-rain parameter creates ambiguity in differentiating light rain (≤0.5 mm h−1) and nonraining areas. Over land, TMI V7 underestimates stage IV more than V6 does at a wide range of rain rates, resulting in an increased negative bias. Both versions of the TMI coastal algorithm are also negatively biased at both moderate and heavy rain rates. Some of the TMI biases can be explained by uncertain relationships between rain rate and 85-GHz ice scattering.

Corresponding author address: Dr. Haiyan Jiang, Dept. of Earth and Environment, Florida International University, 11200 SW 8th St., PC-342B, Miami, FL 33199. E-mail: haiyan.jiang@fiu.edu

Abstract

Rainfall estimates from versions 6 (V6) and 7 (V7) of the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) 2A25 and Microwave Imager (TMI) 2A12 algorithms are compared relative to the Next Generation Weather Radar (NEXRAD) Multisensor Precipitation Estimate stage-IV hourly rainfall product. The dataset consists of 252 TRMM overpasses of tropical cyclones from 2002 to 2010 within a 230-km range of southeastern U.S. Weather Surveillance Radar-1988 Doppler (WSR-88D) sites. All rainfall estimates are averaged to a uniform 1/7° square grid. The grid boxes are also divided by their TMI surface designation (land, ocean, or coast). A detailed statistical analysis is undertaken to determine how changes to the TRMM rainfall algorithms in the latest version (V7) are influencing the rainfall retrievals relative to ground reference data. Version 7 of the PR 2A25 is the best-performing algorithm over all three surface types. Over ocean, TMI 2A12 V7 is improved relative to V6 at high rain rates. At low rain rates, the new ocean TMI V7 probability-of-rain parameter creates ambiguity in differentiating light rain (≤0.5 mm h−1) and nonraining areas. Over land, TMI V7 underestimates stage IV more than V6 does at a wide range of rain rates, resulting in an increased negative bias. Both versions of the TMI coastal algorithm are also negatively biased at both moderate and heavy rain rates. Some of the TMI biases can be explained by uncertain relationships between rain rate and 85-GHz ice scattering.

Corresponding author address: Dr. Haiyan Jiang, Dept. of Earth and Environment, Florida International University, 11200 SW 8th St., PC-342B, Miami, FL 33199. E-mail: haiyan.jiang@fiu.edu
Save
  • Amatai, E., X. Llort, and D. Sempere-Torres, 2009: Comparison of TRMM radar rainfall estimates with NOAA next-generation QPE. J. Meteor. Soc. Japan, 87A, 109118.

    • Search Google Scholar
    • Export Citation
  • Breidenbach, J. P., and J. S. Bradberry, 2001: Multisensor precipitation estimates produced by National Weather Service River Forecast Centers for hydrologic applications. Proc. 2001 Georgia Water Resources Conf., Athens, GA, University of Georgia, 179–182. [Available online at https://smartech.gatech.edu/xmlui/bitstream/handle/1853/43760/BreidenbachJ-01.pdf?sequence=1.]

  • Cecil, D. J., and M. Wingo, 2009: Comparison of TRMM rain-rate retrievals in tropical cyclones. J. Meteor. Soc. Japan, 87, 369380.

  • Cecil, D. J., E. J. Zipser, and S. W. Nesbitt, 2002: Reflectivity, ice scattering, and lightning characteristics of hurricane eyewalls and rainbands. Part I: Quantitative description. Mon. Wea. Rev., 130, 769784.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., J. E. Janowiak, and C. Kidd, 2007: Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Amer. Meteor. Soc., 88, 4764.

    • Search Google Scholar
    • Export Citation
  • Fulton, R. A., 2002: Activities to improve WSR-88D radar rainfall estimation in the National Weather Service. Proc. Second Federal Interagency Hydrologic Modeling Conf., Las Vegas, NV, Subcommittee on Hydrology of the Advisory Committee on Water Information, 11 pp. [Available online at http://www.nws.noaa.gov/oh/hrl/papers/wsr88d/qpe_hydromodelconf_web.pdf.]

  • Fulton, R. A., J. P. Breidenbach, D.-J. Seo, D. A. Miller, and T. O’Bannon, 1998: The WSR-88D rainfall algorithm. Wea. Forecasting, 13, 377395.

    • Search Google Scholar
    • Export Citation
  • Gopalan, K., N.-Y. Wang, R. Ferraro, and C. Liu, 2010: Status of the TRMM 2A12 land precipitation algorithm. J. Atmos. Oceanic Technol., 27, 13431354.

    • Search Google Scholar
    • Export Citation
  • Habib, E., A. Henschke, and R. F. Adler, 2009a: Evaluation of TMPA satellite-based research and real-time rainfall estimates during six tropical-related heavy rainfall events over Louisiana, USA. J. Atmos. Res., 94, 373388.

    • Search Google Scholar
    • Export Citation
  • Habib, E., B. F. Larson, and J. Graschel, 2009b: Validation of NEXRAD multisensor precipitation estimates using an experimental dense rain gauge network in south Louisiana. J. Hydrol., 373, 463478.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor, 8, 3855.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., T. Kozu, R. Meneghini, J. Awaka, and K. Okamoto, 2000: Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor., 39, 20382052.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., and E. J. Zipser, 2010: Contribution of tropical cyclones to the global precipitation from eight seasons of TRMM data: Regional, seasonal, and interannual variations. J. Climate, 23, 15261543.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., C. Liu, and E. J. Zipser, 2011: A TRMM-based tropical cyclone cloud and precipitation feature database. J. Appl. Meteor. Climatol., 50, 12551274.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. S. Olson, and L. Giglio, 1996: A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors. IEEE Trans. Geosci. Remote Sens., 34, 12131232.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817.

    • Search Google Scholar
    • Export Citation
  • McCollum, J. R., and R. R. Ferraro, 2005: Microwave rainfall estimation over coasts. J. Atmos. Oceanic Technol., 22, 497512.

  • Mohr, K. I., and E. J. Zipser, 1996: Mesoscale convective systems defined by their 85-GHz ice scattering signature: Size and intensity comparison over tropical oceans and continents. Mon. Wea. Rev., 124, 24172437.

    • Search Google Scholar
    • Export Citation
  • NASA GSFC, 2012: Precipitation processing system—Tropical Rainfall Measuring Mission: File specification for TRMM products, version 7.002, 328 pp. [Available online at http://pps.gsfc.nasa.gov/Documents/filespec.TRMM.V7.pdf.]

  • Nelson, B. R., D.-J. Seo, and D. Kim, 2010: Multisensor precipitation reanalysis. J. Hydrometeor., 11, 666682.

  • Nesbitt, S. W., E. J. Zipser, and D. J. Cecil, 2000: A census of precipitation features in the tropics using TRMM: Radar, ice scattering, and lightning observations. J. Climate, 13, 40874106.

    • Search Google Scholar
    • Export Citation
  • Prat, O. P., and B. R. Nelson, 2013: Precipitation contribution of tropical cyclones in the southeastern United States from 1998 to 2009 using TRMM satellite data. J. Climate, 26, 10471062.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. Houze, 2000: Comparison of radar data from the TRMM satellite and Kwajalein oceanic validation site. J. Appl. Meteor., 39, 21512164.

    • Search Google Scholar
    • Export Citation
  • Seto, S., and T. Iguchi, 2007: Rainfall-induced changes in actual surface backscattering cross sections and effects on rain-rate estimates by spaceborne precipitation radar. J. Atmos. Oceanic Technol., 24, 16931709.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., D. J. Seo, M. L. Baeck, and M. D. Hudlow, 1996: An intercomparison study of NEXRAD precipitation estimates. Water Resour. Res., 32, 20352045.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., H. M. Goodman, and R. E. Hood, 1989: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6, 254273.

    • Search Google Scholar
    • Export Citation
  • Wang, N.-Y., C. Liu, R. Ferraro, D. Wolff, E. Zipser, and C. Kummerow, 2009: TRMM 2A12 land precipitation product—Status and future plans. J. Meteor. Soc. Japan, 87A, 237253.

    • Search Google Scholar
    • Export Citation
  • Wilheit, T., C. Kummerow, and R. Ferraro, 2003: Rainfall algorithms for the AMSR-E. IEEE Trans. Geosci. Remote Sens., 41, 204214.

  • Willmott, C. J., 1982: Some comments on the evaluation of model performance. Bull. Amer. Meteor Soc., 63, 13091313.

  • Willmott, C. J., S. G. Ackleson, R. E. Davis, J. J. Feddema, K. M. Klink, D. R. Legates, J. O' Donnell, and C. M. Rowe, 1985: Statistics for the evaluation and comparison of models. J. Geophys. Res., 90, 89959005.

    • Search Google Scholar
    • Export Citation
  • Wolff, D. B., and B. L. Fisher, 2008: Comparisons of instantaneous TRMM ground validation and satellite rain-rate estimates at different spatial scales. J. Appl. Meteor. Climatol., 47, 22152237.

    • Search Google Scholar
    • Export Citation
  • Wolff, D. B., D. A. Marks, E. Amitai, D. S. Silberstein, B. L. Fisher, A. Tokay, J. Wang, and J. L. Pippitt, 2005: Ground validation for the Tropical Rainfall Measuring Mission (TRMM). J. Atmos. Oceanic Technol., 22, 365380.

    • Search Google Scholar
    • Export Citation
  • Zagrodnik, J. P., and H. Jiang, 2013: Properties of TRMM precipitation radar and microwave imager rainfall retrievals in tropical cyclone inner cores and rainbands. J. Geophys. Res., 118, 2942, doi:10.1029/2012JD017919.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 473 242 20
PDF Downloads 320 30 2