Developments in the CSU-RAMS Aerosol Model: Emissions, Nucleation, Regeneration, Deposition, and Radiation

Stephen M. Saleeby Colorado State University, Fort Collins, Colorado

Search for other papers by Stephen M. Saleeby in
Current site
Google Scholar
PubMed
Close
and
Susan C. van den Heever Colorado State University, Fort Collins, Colorado

Search for other papers by Susan C. van den Heever in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Colorado State University (CSU) Regional Atmospheric Modeling System (RAMS) has undergone development focused on improving the treatment of aerosols in the microphysics model, with the goal of examining the impacts of aerosol characteristics, scavenging, and regeneration processes, among others, on precipitation processes in clouds ranging from stratocumulus to deep convection and mixed-phase orographic clouds. Improvements in the representation of aerosols allow for more comprehensive studies of aerosol effects on cloud systems across scales. In RAMS there are now sub- and supermicrometer modes of sulfate, mineral dust, sea salt, and regenerated aerosol. All aerosol species can compete for cloud droplet nucleation, and they are regenerated via hydrometeor evaporation. A newly applied heterogeneous ice nuclei parameterization accounts for deposition nucleation and condensation and immersion freezing of aerosols greater than 0.5-μm diameter. There are also schemes for trimodal sea salt emissions and bimodal dust lofting that are functions of wind speed and surface properties. Aerosol wet and dry deposition accounts for collection by falling hydrometeors as well as gravitational settling of aerosols on water, soil, and vegetation. Aerosol radiative effects are parameterized via the Mie theory. An examination of the simulated impact of aerosol characteristics, sources, and sinks reveals mixed sensitivity among cloud types. For example, reduced aerosol solubility has little impact on deep convection since supersaturations are large and nearly all accumulation-mode aerosols activate. In contrast, reduced solubility results in reduced aerosol activation in precipitating stratocumulus. This leads to lower cloud droplet concentration, larger droplet size, and more efficient warm rain processes.

Corresponding author address: Stephen M. Saleeby, Colorado State University, Atmospheric Science Department, 1371 Campus Delivery, Fort Collins, CO 80523. E-mail: smsaleeb@atmos.colostate.edu

Abstract

The Colorado State University (CSU) Regional Atmospheric Modeling System (RAMS) has undergone development focused on improving the treatment of aerosols in the microphysics model, with the goal of examining the impacts of aerosol characteristics, scavenging, and regeneration processes, among others, on precipitation processes in clouds ranging from stratocumulus to deep convection and mixed-phase orographic clouds. Improvements in the representation of aerosols allow for more comprehensive studies of aerosol effects on cloud systems across scales. In RAMS there are now sub- and supermicrometer modes of sulfate, mineral dust, sea salt, and regenerated aerosol. All aerosol species can compete for cloud droplet nucleation, and they are regenerated via hydrometeor evaporation. A newly applied heterogeneous ice nuclei parameterization accounts for deposition nucleation and condensation and immersion freezing of aerosols greater than 0.5-μm diameter. There are also schemes for trimodal sea salt emissions and bimodal dust lofting that are functions of wind speed and surface properties. Aerosol wet and dry deposition accounts for collection by falling hydrometeors as well as gravitational settling of aerosols on water, soil, and vegetation. Aerosol radiative effects are parameterized via the Mie theory. An examination of the simulated impact of aerosol characteristics, sources, and sinks reveals mixed sensitivity among cloud types. For example, reduced aerosol solubility has little impact on deep convection since supersaturations are large and nearly all accumulation-mode aerosols activate. In contrast, reduced solubility results in reduced aerosol activation in precipitating stratocumulus. This leads to lower cloud droplet concentration, larger droplet size, and more efficient warm rain processes.

Corresponding author address: Stephen M. Saleeby, Colorado State University, Atmospheric Science Department, 1371 Campus Delivery, Fort Collins, CO 80523. E-mail: smsaleeb@atmos.colostate.edu
Save
  • Albrecht, B., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 12271230.

  • Alfaro, S. C., and L. Gomes, 2001: Modeling mineral aerosol production by wind erosion: Emission intensities and aerosol size distributions in source areas. J. Geophys. Res., 106, 18 07518 084.

    • Search Google Scholar
    • Export Citation
  • Baron, P. A., and K. Willeke, 2001: Aerosol Measurement: Principles, Techniques and Applications. 2nd ed. Wiley-Interscience, 1131 pp.

  • Bernardet, L., and W. R. Cotton, 1998: Multiscale evolution of a derecho-producing mesoscale convective system. Mon. Wea. Rev., 126, 29913015.

    • Search Google Scholar
    • Export Citation
  • Berthet, S., M. Leriche, J.-P. Pinty, J. Cuesta, and G. Pigeon, 2010: Scavenging of aerosol particles by rain in a cloud resolving model. Atmos. Res., 96, 325336.

    • Search Google Scholar
    • Export Citation
  • Bohren, C. F., and D. R. Huffman, 1983: Absorption and Scattering of Light by Small Particles. John Wiley and Sons, 530 pp.

  • Carlson, T. N., and S. G. Benjamin, 1980: Radiative heating rates for Saharan dust. J. Atmos. Sci., 37, 193213.

  • Carrio, G. G., and W. R. Cotton, 2011: Investigations of aerosol impacts on hurricanes: Virtual seeding flights. J. Atmos. Chem. Phys., 11, 25572567.

    • Search Google Scholar
    • Export Citation
  • Castro, C. L., R. A. Pielke, and J. O. Adegoke, 2007: Investigation of the summer climate of the contiguous United States and Mexico using the Regional Atmospheric Modeling System (RAMS). Part I: Model climatology (1950–2002). J. Climate, 20, 38443865.

    • Search Google Scholar
    • Export Citation
  • Cheng, W. Y. Y., G. G. Carrio, W. R. Cotton, and S. M. Saleeby, 2009: Influence of atmospheric aerosols on the development of precipitating trade wind cumuli in a large eddy simulation. J. Geophys. Res., 114, D08201, doi:10.1029/2008JD011011.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., and Coauthors, 2003: RAMS 2001: Current status and future directions. Meteor. Atmos. Phys., 82, 529.

  • d’Almeida, G. A., P. Koepke, and E. P. Shettle, 1991: Atmospheric Aerosols: Global Climatology and Radiative Characteristics. A. Deepak Publishing, 580 pp.

  • Darby, L. S., R. M. Banta, and R. A. Pielke, 2002: Comparisons between mesoscale model terrain sensitivity studies and Doppler lidar measurements of the sea breeze at Monterey Bay. Mon. Wea. Rev., 130, 28132838.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., M. P. Meyers, and W. R. Cotton, 1994: Parameterization and impact of ice initiation processes relevant to numerical model simulations of cirrus clouds. J. Atmos. Sci., 51, 7790.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., K. Sassen, M. R. Poellot, D. Baumgardner, D. C. Rogers, S. D. Brooks, A. J. Prenni, and S. M. Kreidenweis, 2003: African dust aerosols as atmospheric ice nuclei. Geophys. Res. Lett., 30, 1732, doi:10.1029/2003GL017410.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2010: Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci. USA, 107, 11 21711 222.

    • Search Google Scholar
    • Export Citation
  • Ekman, A. M. L., C. Wang, J. Wilson, and J. Ström, 2004: Explicit simulations of aerosol physics in a cloud-resolving model: A sensitivity study based on an observed convective cloud. Atmos. Chem. Phys., 4, 773791.

    • Search Google Scholar
    • Export Citation
  • Ekman, A. M. L., C. Wang, J. Ström, and R. Krejci, 2006: Explicit simulation of aerosol physics in a cloud-resolving model: Aerosol transport and processing in the free troposphere. J. Atmos. Sci., 63, 682696.

    • Search Google Scholar
    • Export Citation
  • Engström, A., A. M. L. Ekman, R. Krejci, J. Ström, M. de Reus, and C. Wang, 2008: Observational and modeling evidence of tropical deep convective clouds as a source of mid-tropospheric accumulation model aerosols. Geophys. Res. Lett., 35, L23813, doi:10.1029/2008GL035817.

    • Search Google Scholar
    • Export Citation
  • Fan, T., and O. B. Toon, 2011: Modeling sea-salt aerosol in a coupled climate and sectional microphysical model: Mass, optical depth and number concentration. Atmos. Chem. Phys., 11, 45874610.

    • Search Google Scholar
    • Export Citation
  • Fécan, F., B. Marticorena, and G. Bergametti, 1999: Parameterization of the increase of the Aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas. Ann. Geophys., 17, 149157.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., and A. J. Heymsfield, 1992: Parameterizations of condensational growth of droplets for use in general circulation models. J. Atmos. Sci., 49, 23252342.

    • Search Google Scholar
    • Export Citation
  • Fitzgerald, J. W., 1975: Approximation formulas for the equilibrium size of an aerosol particle as a function of its dry size and composition and the ambient relative humidity. J. Appl. Meteor., 14, 10441049.

    • Search Google Scholar
    • Export Citation
  • Flossmann, A. I., W. D. Hall, and H. R. Pruppacher, 1985: A theoretical study of the wet removal of atmospheric pollutants. Part I: The redistribution of aerosol particles captured through nucleation and impaction scavenging by growing cloud drops. J. Atmos. Sci., 42, 583606.

    • Search Google Scholar
    • Export Citation
  • Flossmann, A. I., H. R. Pruppacher, and J. H. Topalian, 1987: A theoretical study of the wet removal of atmospheric pollutants. Part II: The uptake and redistribution of (NH4)2S04 particles and SO2 gas simultaneously scavenged by growing cloud drops. J. Atmos. Sci., 44, 29122923.

    • Search Google Scholar
    • Export Citation
  • Fridlind, A. M., A. S. Ackerman, G. McFarquhar, G. Zhang, M. R. Poellot, P. J. DeMott, A. J. Prenni, and A. J. Heymsfield, 2007: Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment: 2. Model results. J. Geophys. Res., 112, D24202, doi:10.1029/2007JD008646.

    • Search Google Scholar
    • Export Citation
  • Ginoux, P., M. Chin, I. Tegen, J. M. Prospero, B. Holben, O. Dubovik, and S.-J. Lin, 2001: Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res., 106, 20 25520 273.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., 1997: The effects of radiative and microphysical processes on simulated warm and transition season Arctic stratus. Ph.D. dissertation, Colorado State University, Atmospheric Science Paper 637, 289 pp.

  • Haywood, J., and Coauthors, 2003: Radiative properties and direct radiative effect of Sharan dust measured by the C-130 aircraft during SHADE: 1. Solar spectrum. J. Geophys. Res., 108, 8577, doi:10.1029/2002JD002687.

    • Search Google Scholar
    • Export Citation
  • Hegg, D. A., S. A. Rutledge, and P. V. Hobbs, 1986: A numerical model for sulfur and nitrogen scavenging in narrow cold-frontal rainbands: 2. Discussion of chemical fields. J. Geophys. Res., 91, 14 40314 416.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and R. M. Sabin, 1989: Cirrus crystal nucleation by homogeneous freezing of solution droplets. J. Atmos. Sci., 46, 22522264.

    • Search Google Scholar
    • Export Citation
  • Igel, A., S. C. van den Heever, C. Naud, S. M. Saleeby, and D. Posselt, 2013: Sensitivity of warm frontal processes to cloud-nucleating aerosol concentrations. J. Atmos. Sci., 70, 17681783.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., and G. Feingold, 2006: Effect of aerosol on warm convective clouds: Aerosol-cloud-surface flux feedbacks in a new coupled large eddy model. J. Geophys. Res., 111, D01202, doi:10.1029/2005JD006138.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., G. Feingold, W. R. Cotton, and P. G. Duynkerke, 2001: Large-eddy simulations of entrainment of cloud condensation nuclei into the Arctic boundary layer: May 18, 1998, FIRE/SHEBA case study. J. Geophys. Res., 106, 15 11315 122.

    • Search Google Scholar
    • Export Citation
  • Kok, J. F., 2011: Does the size distribution of mineral dust aerosols depend on the wind speed at emission? Atmos. Chem. Phys., 11, 10 14910 156.

    • Search Google Scholar
    • Export Citation
  • Lee, S. S., 2012: Effect of aerosol on circulations and precipitation in deep convective clouds. J. Atmos. Sci., 69, 19571974.

  • Lee, S. S., J. E. Penner, and S. M. Saleeby, 2009: Aerosol effects on liquid-water path of thin stratocumulus clouds. J. Geophys. Res., 114, D07204, doi:10.1029/2008JD010513.

    • Search Google Scholar
    • Export Citation
  • Liou, K. N., K. P. Freeman, and T. Sasamori, 1978: Cloud and aerosol effects on the solar heating rate of the atmosphere. Tellus, 30, 6270.

    • Search Google Scholar
    • Export Citation
  • Lu, L., and W. J. Shuttleworth, 2002: Incorporating NDVI-derived LAI into the climate version of rams and its impact on regional climate. J. Hydrometeor., 3, 347362.

    • Search Google Scholar
    • Export Citation
  • Marticorena, B., and G. Bergametti, 1995: Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. J. Geophys. Res., 100, 16 41516 430.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., P. J. DeMott, and W. R. Cotton, 1992: New primary ice nucleation parameterizations in an explicit cloud model. J. Appl. Meteor., 31, 708721.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., R. L. Walko, J. Y. Harrington, and W. R. Cotton, 1997: New RAMS cloud microphysics parameterization. Part II. The two-moment scheme. Atmos. Res., 45, 339.

    • Search Google Scholar
    • Export Citation
  • Mie, G., 1908: Beiträge zur Optik trüber Medien, spieziell kolloidaler Metallösungen (Contributions to the optics of turbid media, particularly of colloidal solutions). Ann. Phys., 330, 377445, doi:10.1002/andp.19083300302.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., L. D. Travis, R. A. Kahn, and R. A. West, 1997: Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids. J. Geophys. Res., 102, 16 83116 847.

    • Search Google Scholar
    • Export Citation
  • O’Dowd, C. D., M. H. Smith, I. E. Consterdine, and J. A. Lowe, 1997: Marine aerosol, sea-salt, and the marine sulphur cycle: A short review. Atmos. Environ., 31, 7380.

    • Search Google Scholar
    • Export Citation
  • O’Dowd, C. D., J. A. Lowe, and M. H. Smith, 1999: Coupling sea-salt and sulphate interactions and its impact on cloud droplet concentration predictions. Geophys. Res. Lett., 26, 13111314.

    • Search Google Scholar
    • Export Citation
  • Olsson, P., and W. R. Cotton, 1997: Balanced and unbalanced circulations in a primitive equation simulation of a midlatitude MCC. Part I: The numerical simulation. J. Atmos. Sci., 54, 457478.

    • Search Google Scholar
    • Export Citation
  • Petters, M. D., and S. M. Kreidenweis, 2007: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys., 7, 19611971.

    • Search Google Scholar
    • Export Citation
  • Pierre, C., G. Bergametti, B. Marticorena, E. Mougin, C. Bouet, and C. Schmechtig, 2012: Impact of vegetation and soil moisture seasonal dynamics on dust emissions over the Sahel. J. Geophys. Res., 117, D06114, doi:10.1029/2011JD016950.

    • Search Google Scholar
    • Export Citation
  • Reutter, P., and Coauthors, 2009: Aerosol- and updraft-limited regimes of cloud droplet formation: Influence of particle number, size and hygroscopicity on the activation of cloud condensation nuclei (CCN). Atmos. Chem. Phys., 9, 70677080.

    • Search Google Scholar
    • Export Citation
  • Ritter, B., and J.-F. Geleyn, 1992: A comprehensive radiation scheme for numerical weather prediction models with potential application in climate situations. Mon. Wea. Rev., 120, 303325.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., D. A. Hegg, and P. V. Hobbs, 1986: A numerical model for sulfur and nitrogen scavenging in narrow cold-frontal rainbands: 1. Model description and discussion of microphysical fields. J. Geophys. Res., 91, 14 38614 402.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., and W. R. Cotton, 2004a: A large droplet mode and prognostic number concentration of cloud droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part I: Module descriptions and supercell test simulations. J. Appl. Meteor., 43, 182195.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., and W. R. Cotton, 2004b: Simulations of the North American monsoon system. Part I: Model analysis of the 1993 monsoon season. J. Climate, 17, 19972018.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., and W. R. Cotton, 2008: A binned approach to cloud-droplet riming implemented in a bulk microphysics model. J. Appl. Meteor. Climatol., 47, 694703.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., W. R. Cotton, D. Lowenthal, R. D. Borys, and M. A. Wetzel, 2009: Influence of cloud condensation nuclei on orographic snowfall. J. Appl. Meteor. Climatol., 48, 903922.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., W. R. Cotton, and J. Fuller, 2011: The cumulative impact of cloud droplet nucleating aerosols on orographic snowfall in Colorado. J. Appl. Meteor. Climatol., 50, 604625.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., W. R. Cotton, D. Lowenthal, and J. Messina, 2013: Aerosol impacts on the microphysical growth processes of orographic snowfall. J. Appl. Meteor. Climatol., 52, 834–852.

    • Search Google Scholar
    • Export Citation
  • Seigel, R. B., and S. C. van den Heever, 2012: Mineral dust pathways into supercell storms. J. Atmos. Sci., 69, 14531473.

  • Seinfeld, J. H., and S. N. Pandis, 2006: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. John Wiley and Sons, 1203 pp.

  • Shao, Y., 2001: A model for mineral dust emission. J. Geophys. Res., 106, 20 23920 254.

  • Slingo, A., and H. M. Schrecker, 1982: On the shortwave radiative properties of stratiform water clouds. Quart. J. Roy. Meteor. Soc., 108, 407426.

    • Search Google Scholar
    • Export Citation
  • Slinn, S. A., and W. G. N. Slinn, 1980: Predictions for particle deposition on natural waters. Atmos. Environ., 14, 10131026.

  • Slinn, W. G. N., 1982: Predictions for particle deposition to vegetative canopies. Atmos. Environ., 16, 17851794.

  • Slinn, W. G. N., 1983: Precipitation scavenging. Atmospheric Sciences and Power Production, U.S. Department of Energy, 466–532.

  • Smith, M. A., 2007: Evaluation of mesoscale simulations of dust sources, sinks, and transport over the Middle East. M.S. thesis, Dept. of Atmospheric Science, Colorado State University, 126 pp.

  • Smith, M. H., M. P. Park, and I. E. Consterdine, 1993: Marine aerosol concentrations and estimated fluxes over the sea. Quart. J. Roy. Meteor. Soc., 119, 809824.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. Averyt, M. Tignor, and H. L. Miller Jr., Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Stevens, B., and Coauthors, 2001: Simulations of trade wind cumuli under a strong inversion. J. Atmos. Sci., 58, 18701890.

  • Stokowski, D., 2005: The addition of the direct radiative effect of atmospheric aerosols into the Regional Atmospheric Modeling System (RAMS). M.S. thesis, Dept. of Atmospheric Science, Colorado State University, Atmospheric Science Paper 637, 89 pp.

  • Storer, R. L., and S. C. van den Heever, 2013: Microphysical processes evident in aerosol forcing of tropical deep convective clouds. J. Atmos. Sci., 70, 430446.

    • Search Google Scholar
    • Export Citation
  • Tegen, I., and I. Fung, 1994: Modeling of mineral dust in the atmosphere: Sources, transport and optical thickness. J. Geophys. Res., 99, 22 89722 914.

    • Search Google Scholar
    • Export Citation
  • Tegen, I., and A. A. Lacis, 1996: Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol. J. Geophys. Res., 101, 19 23719 244.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1974: Pollution and the planetary albedo. Atmos. Environ., 8, 12511256.

  • van den Heever, S. C., and W. R. Cotton, 2004: The impact of hail size on simulated supercell storms. J. Atmos. Sci., 61, 15961609.

  • van den Heever, S. C., G. G. Carrio, W. R. Cotton, P. J. DeMott, and A. J. Prenni, 2006: Impacts of nucleating aerosol on Florida storms. Part I: Mesoscale simulations. J. Atmos. Sci., 63, 17521775.

    • Search Google Scholar
    • Export Citation
  • van den Heever, S. C., G. L. Stephens, and N. B. Wood, 2011: Aerosol indirect effects on tropical convection characteristics under conditions of radiative-convective equilibrium. J. Atmos. Sci., 68, 699718.

    • Search Google Scholar
    • Export Citation
  • Verlinde, J., P. J. Flatau, and W. R. Cotton, 1990: Analytical solutions to the collection growth equation: Comparison with approximate methods and application to cloud microphysics parameterization schemes. J. Atmos. Sci., 47, 28712880.

    • Search Google Scholar
    • Export Citation
  • Walko, R. L., W. R. Cotton, M. P. Meyers, and J. Y. Harrington, 1995: New RAMS cloud microphysics parameterization: Part I. The single-moment scheme. Atmos. Res., 38, 2962.

    • Search Google Scholar
    • Export Citation
  • Walko, R. L., W. R. Cotton, M. P. Meyers, and J. Y. Harrington, 2000a: Efficient computation of vapor and heat diffusion between hydrometeors in a numerical model. Atmos. Res., 53, 171183.

    • Search Google Scholar
    • Export Citation
  • Walko, R. L., and Coauthors, 2000b: Coupled atmosphere–biophysics–hydrology models for environmental modeling. J. Appl. Meteor., 39, 931944.

    • Search Google Scholar
    • Export Citation
  • Wang, C., and J. S. Chang, 1993: A three-dimensional numerical model of cloud dynamics, microphysics, and chemistry: 1. Concepts and formulation. J. Geophys. Res., 98, 14 82714 844.

    • Search Google Scholar
    • Export Citation
  • Wang, X., L. Zhang, and M. D. Moran, 2010: Uncertainty assessment of current size-resolved parameterizations for below-cloud particle scavenging by rain. Atmos. Chem. Phys. Discuss., 10, 25032548.

    • Search Google Scholar
    • Export Citation
  • Ward, D. S., T. Eidhammer, W. R. Cotton, and S. M. Kreidenweis, 2010: The role of the particle size distribution in assessing aerosol composition effects on simulated droplet activation. Atmos. Chem. Phys., 10, 54355447.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., G. M. McFarquhar, S. M. Saleeby, and W. R. Cotton, 2007: Impacts of Saharan dust as CCN on the evolution of an idealized tropical cyclone. Geophys. Res. Lett., 34, L14812, doi:10.1029/2007GL029876.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., S. Gong, J. Padro, and L. Barrie, 2000: A size-segregated particle dry deposition scheme for an atmospheric aerosol module. Atmos. Environ., 35, 549560.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2682 1671 70
PDF Downloads 690 141 19