• Anderson, B. G., and M. L. Bell, 2009: Weather-related mortality: How heat, cold, and heat waves affect mortality in the United States. Epidemiology, 20, 205213.

    • Search Google Scholar
    • Export Citation
  • ASSSM, 2012: Chaleur accablante ou extrême 2012—Plan régional de prévention et de protection et guide à l’intention des établissements de santé. Agence de la santé et des services sociaux (ASSSM) de Montréal, Direction de santé publique, 126 pp.

  • Basu, R., and J. M. Samet, 2002: Relation between elevated ambient temperature and mortality: A review of the epidemiologic evidence. Epidemiol. Rev.,24, 190–202.

  • Boé, J., L. Terray, F. Habets, and E. Martin, 2007: Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies. Int. J. Climatol., 27, 16431655.

    • Search Google Scholar
    • Export Citation
  • Brown, S. J., J. Caesar, and C. A. T. Ferro, 2008: Global changes in extreme daily temperature since 1950. J. Geophys. Res., 113, D05115, doi:10.1029/2006JD008091.

    • Search Google Scholar
    • Export Citation
  • Bustinza, R., G. Lebel, P. Gosselin, D. Bélanger, and F. Chebana, 2013: Health impacts of the July 2010 heat wave in Québec, Canada. BMC Public Health, 13, 56.

    • Search Google Scholar
    • Export Citation
  • Caya, D., and R. Laprise, 1999: A semi-implicit semi-Lagrangian regional climate model: The Canadian RCM. Mon. Wea. Rev., 127, 341362.

    • Search Google Scholar
    • Export Citation
  • Chen, J., F. P. Brissette, and R. Leconte, 2011: Uncertainty of downscaling method in quantifying the impact of climate change on hydrology. J. Hydrol., 401, 190202.

    • Search Google Scholar
    • Export Citation
  • Chen, J., F. P. Brissette, D. Chaumont, and M. Braun, 2013: Performance and uncertainty evaluation of empirical downscaling methods in quantifying the climate change impacts on hydrology over two North American rivers. J. Hydrol., 479, 200214.

    • Search Google Scholar
    • Export Citation
  • Cheng, C. S., and Coauthors, 2008a: Differential and combined impacts of extreme temperatures and air pollution on human mortality in south–central Canada. Part I: Historical analysis. Air Qual. Atmos. Health, 1, 209222.

    • Search Google Scholar
    • Export Citation
  • Cheng, C. S., and Coauthors, 2008b: Differential and combined impacts of extreme temperatures and air pollution on human mortality in south–central Canada. Part II: Future estimates. Air Qual. Atmos. Health, 1, 223235.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and O. B. Christensen, 2007: A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Climatic Change, 81, 730.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and Coauthors, 2007: Regional climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 847–940.

  • Clark, R. T., S. J. Brown, and J. M. Murphy, 2006: Modeling Northern Hemisphere summer heat extreme changes and their uncertainties using a physics ensemble of climate sensitivity experiments. J. Climate, 19, 44184435.

    • Search Google Scholar
    • Export Citation
  • Coles, S., 2001: An Introduction to Statistical Modeling of Extreme Values. Springer, 208 pp.

  • Costello, A., and Coauthors, 2009: Managing the health effects of climate change. Lancet, 373, 16931733, doi: 10.1016/S0140-6736(09)60935-1.

    • Search Google Scholar
    • Export Citation
  • Curriero, F. C., K. S. Heiner, J. M. Samet, S. L. Zeger, L. Strug, and J. A. Patz, 2002: Temperature and mortality in 11 cities of the eastern United States. Amer. J. Epidemiol., 155, 8087.

    • Search Google Scholar
    • Export Citation
  • de Elía, R., and H. Côté, 2010: Climate and climate change sensitivity to model configuration in the Canadian RCM over North America. Meteor. Z., 19, 325339.

    • Search Google Scholar
    • Export Citation
  • Della-Marta, P. M., and M. Beniston, 2007: Summer heat waves in western Europe: Their past change and future projections. Climate Variability and Extremes during the Past 100 Years, S. Brönnimann et al., Eds., Springer, 235–250.

  • Della-Marta, P. M., M. R. Haylock, J. Luterbacher, and H. Wanner, 2007: Doubled length of western European summer heat waves since 1880. J. Geophys. Res., 112, D15103, doi:10.1029/2007JD008510.

    • Search Google Scholar
    • Export Citation
  • Dematte, J. E., K. O’Mara, J. Buescher, C. G. Whitney, S. Forsythe, T. McNamee, R. B. Adiga, and I. M. Ndukwu, 1998: Near-fatal heat stroke during the 1995 heat wave in Chicago. Ann. Intern. Med., 129, 173181.

    • Search Google Scholar
    • Export Citation
  • Déqué, M., 2007: Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: Model results and statistical correction according to observed values. Global Planet. Change, 57, 1626.

    • Search Google Scholar
    • Export Citation
  • Déqué, M., and Coauthors, 2007: An intercomparison of regional climate symulations over Europe: Assessing uncertainties in model projections. Climatic Change, 81, 5370.

    • Search Google Scholar
    • Export Citation
  • Doyon, B., D. Bélanger, and P. Gosselin, 2008: The potential impact of climate change on annual and seasonal mortality for three cities in Québec, Canada. Int. J. Health Geogr., 7, 2335.

    • Search Google Scholar
    • Export Citation
  • Field C. B., and Coauthors, Eds., 2012: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Cambridge University Press, 582 pp.

  • Fischer, E. M., and C. Schär, 2009: Future changes in daily summer temperature variability: Driving processes and role for temperature extremes. Climate Dyn., 33, 917935.

    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., and C. Schär, 2010: Consistent geographical patterns of changes in high-impact European heatwaves. Nat. Geosci., 3, 398403.

    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., S. I. Seneviratne, D. Lüthi, and C. Schär, 2007a: The contribution of land–atmosphere coupling to recent European summer heat waves. Geophys. Res. Lett., 34, L06707, doi:10.1029/2006GL029068.

    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., S. I. Seneviratne, P. L. Vidale, D. Lüthi, and C. Schär, 2007b: Soil moisture–atmosphere interactions during the 2003 European summer heat wave. J. Climate, 20, 50815099.

    • Search Google Scholar
    • Export Citation
  • Flato, G. M., and G. J. Boer, 2001: Warming asymmetry in climate change simulations. Geophys. Res. Lett., 28, 195198.

  • Fowler, H. J., S. Blenkinsop, and C. Tebaldi, 2007: Linking climate change modelling to impact studies: Recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol., 27, 15471578.

    • Search Google Scholar
    • Export Citation
  • Gosling, S. N., J. A. Lowe, G. R. McGregor, M. Pelling, and B. D. Malamud, 2009a: Associations between elevated atmospheric temperature and human mortality: A critical review of the literature. Climatic Change, 92, 299341.

    • Search Google Scholar
    • Export Citation
  • Gosling, S. N., G. McGregor, and J. Lowe, 2009b: Climate change and heat-related mortality in six cities Part 2: Climate model evaluation and projected impacts from changes in the mean and variability of temperature with climate change. Int. J. Biometeor., 53, 3151.

    • Search Google Scholar
    • Export Citation
  • Gosling, S. N., G. R. McGregor, and J. A. Lowe, 2012: The benefits of quantifying climate model uncertainty in climate change impacts assessment: An example with heat-related mortality change estimates. Climatic Change, 112, 217231.

    • Search Google Scholar
    • Export Citation
  • Haerter, J. O., S. Hagemann, C. Moseley, and C. Piani, 2011: Climate model bias-correction and the role of time-scales. Hydrol. Earth Syst. Sci., 15, 10651079.

    • Search Google Scholar
    • Export Citation
  • Hagemann, S., C. Chen, J. O. Haerter, J. Heinke, D. Gerten, and C. Piani, 2011: Impact of a statistical bias correction on the projected hydrological changes obtained from three GCMs and two hydrology models. J. Hydrometeor., 12, 556578.

    • Search Google Scholar
    • Export Citation
  • Hastie, T. J., and R. J. Tibshirani, 1990: Generalized Additive Models. Chapman and Hall, 335 pp.

  • Hawkins, E., and R. Sutton, 2009: The potential to narrow uncertainties in regional climate projections. Bull. Amer. Meteor. Soc.,90, 1095–1107.

  • Health Canada, cited 2010: Developing heat resilient communities and individuals in Canada. [Available online at http://www.hc-sc.gc.ca/ewh-semt/climat/adapt/heat-chaleur-eng.php.]

  • Health Canada, 2012: Heat Alert and Response Systems to Protect Health: Best Practices Guidebook. Health Canada, 92 pp.

  • Ho, C. K., D. B. Stephenson, M. Collins, C. A. T. Ferro, and S. J. Brown, 2012: Calibration strategies: A source of additional uncertainty in climate change projections. Bull. Amer. Meteor. Soc.,93, 21–26.

  • Hoffmann, H., and T. Rath, 2012: Meteorologically consistent bias correction of climate time series for agricultural models. Theor. Appl. Climatol., 110, 129141.

    • Search Google Scholar
    • Export Citation
  • Huang, C., A. G. Barnett, X. Wang, P. Vaneckova, G. FitzGerald, and S. Tong, 2011: Projecting future heat-related mortality under climate change scenarios: A systematic review. Environ. Health Perspect., 119, 16811690.

    • Search Google Scholar
    • Export Citation
  • Ibrahim, J. E., J. A. McInnes, N. Andrianopoulos, and S. Evans, 2012: Minimising harm from heatwaves: A survey of awareness, knowledge, and practices of health professionals and care providers in Victoria, Australia. Int. J. Public Health, 57, 297304.

    • Search Google Scholar
    • Export Citation
  • Katz, R. W., M. B. Parlange, and P. Naveau, 2002: Statistics of extremes in hydrology. Adv. Water Resour., 25, 12871304.

  • Kharin, V. V., and F. W. Zwiers, 2005: Estimating extremes in transient climate change simulations. J. Climate, 18, 11561173.

  • Kharin, V. V., F. W. Zwiers, X. Zhang, and G. C. Hegerl, 2007: Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Climate, 20, 14191444.

    • Search Google Scholar
    • Export Citation
  • Kosatsky, T., 2010: Hot day deaths, summer 2009: What happened and how to prevent a recurrence. BC Med. J.,52 (5), 261.

  • Kravchenko, J., A. P. Abernethy, M. Fawzy, and H. K. Lyerly, 2013: Minimization of heatwave morbidity and mortality. Amer. J. Prev. Med., 44, 274282.

    • Search Google Scholar
    • Export Citation
  • Lafon, T., S. Dadson, G. Buys, and C. Prudhomme, 2013: Bias correction of daily precipitation simulated by a regional climate model: A comparison of methods. Int. J. Climatol., 33, 13671381.

    • Search Google Scholar
    • Export Citation
  • Laprise, R., 2008: Regional climate modelling. J. Comput. Phys., 227, 36413666.

  • Leander, R., and T. A. Buishand, 2007: Resampling of regional climate model output for the simulation of extreme river flows. J. Hydrol., 332, 487496.

    • Search Google Scholar
    • Export Citation
  • Leander, R., T. A. Buishand, B. J. J. M. van den Hurk, and M. J. M. de Wit, 2008: Estimated changes in flood quantiles of the river Meuse from resampling of regional climate model output. J. Hydrol., 351, 331343.

    • Search Google Scholar
    • Export Citation
  • Li, H., J. Sheffield, and E. F. Wood, 2010: Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. J. Geophys. Res., 115, D10101, doi:10.1029/2009JD012882.

    • Search Google Scholar
    • Export Citation
  • Maraun, D., 2012: Nonstationarities of regional climate model biases in European seasonal mean temperature and precipitation sums. Geophys. Res. Lett., 38, L06706, doi:10.1029/2012GL051210.

    • Search Google Scholar
    • Export Citation
  • Maraun, D., and Coauthors, 2010: Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys., 48, RG3003, doi:10.1029/2009RG000314.

    • Search Google Scholar
    • Export Citation
  • Martin, S. L., S. Cakmak, C. A. Hebbern, M.-L. Avramescu, and N. Tremblay, 2012: Climate change and future temperature-related mortality in 15 Canadian cities. Int. J. Biometeor., 56, 605619.

    • Search Google Scholar
    • Export Citation
  • Masterton, J. M., and F. A. Richardson, 1979: Humidex: A method of quantifying human discomfort due to excessive heat and humidity. Environment Canada, Atmospheric Environment Service, 45 pp.

  • Maurer, E. P., H. G. Hidalgo, T. Das, M. D. Dettinger, and D. R. Cayan, 2010: The utility of daily large-scale climate data in the assessment of climate change impacts on daily streamflow in California. Hydrol. Earth Syst. Sci., 14, 11251138.

    • Search Google Scholar
    • Export Citation
  • McGregor, G., M. Pelling, T. Wolf, and S. Gosling, 2007: The social impacts of heat waves. Science Rep. SC20061/SR6, Environment Agency, Bristol, UK, 47 pp.

  • Medina-Ramón, M., and J. Schwartz, 2007: Temperature, temperature extremes, and mortality: A study of acclimatisation and effect modification in 50 US cities. Occup. Environ. Med., 64, 827833.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and C. Tebaldi, 2004: More intense, more frequent and longer lasting heat waves in the 21st century. Science, 305, 994997.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. J. Stouffer, and K. E. Taylor, 2007a: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007b: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–845.

  • Michelangeli, P.-A., M. Vrac, and H. Loukos, 2009: Probabilistic downscaling approaches: Application to wind cumulative distribution functions. Geophys. Res. Lett., 36, L11708, doi:10.1029/2009GL038401.

    • Search Google Scholar
    • Export Citation
  • Murphy, J. M., D. M. H. Sexton, D. N. Barnett, G. S. Jones, M. J. Webb, M. Collins, and D. A. Stainforth, 2004: Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature, 429, 768772.

    • Search Google Scholar
    • Export Citation
  • Music, B., and D. Caya, 2007: Evaluation of the hydrological cycle over the Mississippi River basin as simulated by the Canadian Regional Climate Model (CRCM). J. Hydrometeor., 8, 969988.

    • Search Google Scholar
    • Export Citation
  • Nakicenovic, N., and Coauthors, Eds., 2000: Special Report on Emissions Scenarios. Cambridge University Press, 599 pp.

  • Naveau, P., M. Nogaj, C. Ammann, P. Yiou, D. Cooley, and V. Jomelli, 2005: Statistical methods for the analysis of climate extremes. C. R. Geosci., 337, 10131022.

    • Search Google Scholar
    • Export Citation
  • Nogaj, M., P. Yiou, S. Parey, F. Malek, and P. Naveau, 2006: Amplitude and frequency of temperature extremes over the North Atlantic region. Geophys. Res. Lett., 33, L10801, doi:10.1029/2005GL024251.

    • Search Google Scholar
    • Export Citation
  • Orlowsky, B., and S. I. Seneviratne, 2011: Global changes in extremes events: Regional and seasonal dimension. Climatic Change, 110, 669696, doi:10.1007/s10584-011-0122-9.

    • Search Google Scholar
    • Export Citation
  • Panofsky, H. A., and G. W. Brier, 1968: Some Applications of Statistics to Meteorology. The Pennsylvania State University Press, 224 pp.

  • Peng, R. D., J. F. Bobb, C. Tebaldi, L. McDaniel, M. L. Bell, and F. Dominici, 2011: Toward a quantitative estimate of future heat wave mortality under global climate change. Environ. Health Perspect., 119, 701706.

    • Search Google Scholar
    • Export Citation
  • Piani, C., and J. O. Haerter, 2013: Two dimensional bias correction of temperature and precipitation copulas in climate models. Geophys. Res. Lett., 39, L20401, doi:10.1029/2012GL053839.

    • Search Google Scholar
    • Export Citation
  • Piani, C., J. O. Haerter, and E. Coppola, 2010a: Statistical bias correction for daily precipitation in regional climate models over Europe. Theor. Appl. Climatol., 99, 187192.

    • Search Google Scholar
    • Export Citation
  • Piani, C., G. P. Weedon, M. Best, S. M. Gomes, P. Gomes, S. Hagemann, and J. O. Haerter, 2010b: Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models. J. Hydrol., 395, 199215.

    • Search Google Scholar
    • Export Citation
  • Robine, J. M., S. L. Cheung, S. Le Roy, H. Van Oyen, C. Griffiths, J. Michel, and F. Herrmann, 2008: Death toll exceeded 70,000 in Europe during the summer of 2003. C. R. Biol., 331, 171178.

    • Search Google Scholar
    • Export Citation
  • Robinson, P. J., 2001: On the definition of a heat wave. J. Appl. Meteor., 40, 762775.

  • Schär, C., P.-L. Vidale, D. Lüthi, C. Frei, C. Häberli, M. A. Liniger, and C. Appenzeller, 2004: The role of increasing temperature variability in European summer heatwaves. Nature, 427, 332336.

    • Search Google Scholar
    • Export Citation
  • Schwartz, J., 2005: Who is sensitive to extremes of temperature? A case-only analysis. Epidemiology, 16, 6772.

  • Scinocca, J. F., N. A. McFarlane, M. Lazare, J. Li, and D. A. Plummer, 2008: The CCCma third-generation AGCM and its extension into the middle atmosphere. Atmos. Chem. Phys., 8, 70557074.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth Sci. Rev., 99, 125161.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., and Coauthors, 2012: Changes in climate extremes and their impacts on the natural physical environment. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, C. B. Field et al., Eds., Cambridge University Press, 109–230.

  • Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. Averyt, M. M. B. Tignor, and H. L. Miller Jr., Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Sterl, A., and Coauthors, 2008: When can we expect extremely high surface temperatures? Geophys. Res. Lett., 35, L14703, doi:10.1029/2008GL034071.

    • Search Google Scholar
    • Export Citation
  • Teutschbein, C., and J. Seibert, 2012a: Bias correction of regional climate model simulations for hydrological climate change impacts: Review and evaluation of different methods. J. Hydrol., 456–457, 1229.

    • Search Google Scholar
    • Export Citation
  • Teutschbein, C., and J. Seibert, 2012b: Is bias correction of regional climate model (RCM) simulations possible for non-stationary conditions? Hydrol. Earth Syst. Sci. Discuss., 9, 12 76512 795.

    • Search Google Scholar
    • Export Citation
  • Themeßl, M. J., A. Gobiet, and A. Leuprecht, 2010: Empirical statistical downscaling and error correction of daily precipitation from regional climate models. Int. J. Climatol., 31, 15301544.

    • Search Google Scholar
    • Export Citation
  • Themeßl, M. J., A. Gobiet, and G. Heinrich, 2011: Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal. Climatic Change, 112, 449–468.

    • Search Google Scholar
    • Export Citation
  • United Nations, cited 2011: UN: 2010 among deadliest years for disasters, urges better preparedness. UN News Centre. [Available online at http://www.un.org/apps/news/story.asp?NewsID=37357.]

  • Vincent, L., and E. Mekis, 2006: Changes in daily and extreme temperature and precipitation indices for Canada over the twentieth century. Atmos.–Ocean, 44, 177193.

    • Search Google Scholar
    • Export Citation
  • Wehner, M., 2010: Sources of uncertainty in the extreme value statistics of climate data. Extremes, 13, 205217.

  • Williams, S., M. Nitschke, P. Weinstein, D. L. Pisaniello, K. A. Parton, and P. Bi, 2012: The impact of summer temperatures and heatwaves on mortality and morbidity in Perth, Australia 1994–2008. Environ. Int., 40, 3338.

    • Search Google Scholar
    • Export Citation
  • Wood, A., L. R. Leung, V. Sridhar, and D. P. Lettenmaier, 2004: Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change, 62, 189216.

    • Search Google Scholar
    • Export Citation
  • Zwiers, F. W., X. Zhang, and Y. Feng, 2011: Anthropogenic influence on long return period daily temperature extremes at regional scales. J. Climate, 24, 881892.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 639 347 31
PDF Downloads 371 231 27

Regional Climate Projections of Extreme Heat Events in Nine Pilot Canadian Communities for Public Health Planning

View More View Less
  • 1 Consortium Ouranos, Montréal, Québec, Canada
  • | 2 Climate Change and Health Office, Health Canada, Ottawa, Ontario, Canada
  • | 3 Consortium Ouranos, Montréal, Québec, Canada
Restricted access

Abstract

Public health planning needs the support of evidence-based information on current and future climate, which could be used by health professionals and decision makers to better understand and respond to the health impacts of extreme heat. Climate models provide information regarding the expected increase in temperatures and extreme heat events with climate change and can help predict the severity of future health impacts, which can be used in the public health sector for the development of adaptation strategies to reduce heat-related morbidity and mortality. This study analyzes the evolution of extreme temperature indices specifically defined to characterize heat events associated with health risks, in the context of a changing climate. The analysis is performed by using temperature projections from the Canadian Regional Climate Model. A quantile-based statistical correction is applied to the projected temperatures, in order to reduce model biases and account for the representativeness error. Moreover, generalized Pareto distributions are used to extend the temperature distribution upper tails and extrapolate the statistical correction to extremes that are not observed in the present but that might occur in the future. The largest increase in extreme daytime temperatures occurs in southern Manitoba, Canada, where the already overly dry climate and lack of soil moisture can lead to an uncontrolled enhancement of hot extremes. The occurrence of warm nights and heat waves, on the other hand, is already large and will increase substantially in the communities of the Great Lakes region, characterized by a humid climate. Impact and adaptation studies need to account for the temperature variability due to local effects, since it can be considerably larger than the model natural variability.

Corresponding author address: Barbara Casati, Consortium Ouranos, 550 Sherbrooke West, 19th floor, Montréal, QC H3A 1B9, Canada. E-mail: casati.barbara@ouranos.ca

Abstract

Public health planning needs the support of evidence-based information on current and future climate, which could be used by health professionals and decision makers to better understand and respond to the health impacts of extreme heat. Climate models provide information regarding the expected increase in temperatures and extreme heat events with climate change and can help predict the severity of future health impacts, which can be used in the public health sector for the development of adaptation strategies to reduce heat-related morbidity and mortality. This study analyzes the evolution of extreme temperature indices specifically defined to characterize heat events associated with health risks, in the context of a changing climate. The analysis is performed by using temperature projections from the Canadian Regional Climate Model. A quantile-based statistical correction is applied to the projected temperatures, in order to reduce model biases and account for the representativeness error. Moreover, generalized Pareto distributions are used to extend the temperature distribution upper tails and extrapolate the statistical correction to extremes that are not observed in the present but that might occur in the future. The largest increase in extreme daytime temperatures occurs in southern Manitoba, Canada, where the already overly dry climate and lack of soil moisture can lead to an uncontrolled enhancement of hot extremes. The occurrence of warm nights and heat waves, on the other hand, is already large and will increase substantially in the communities of the Great Lakes region, characterized by a humid climate. Impact and adaptation studies need to account for the temperature variability due to local effects, since it can be considerably larger than the model natural variability.

Corresponding author address: Barbara Casati, Consortium Ouranos, 550 Sherbrooke West, 19th floor, Montréal, QC H3A 1B9, Canada. E-mail: casati.barbara@ouranos.ca
Save