• Arnfield, J., 2003: Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol., 23, 126.

    • Search Google Scholar
    • Export Citation
  • Bechtel, B., and K. J. Schmidt, 2011: Floristic mapping data as a new proxy for the mean urban heat island. Climate Res., 49, 4558, doi:10.3354/cr01009.

    • Search Google Scholar
    • Export Citation
  • Beck, C., 2011: Monthly mean PM10 concentrations in Augsburg (Germany) and their relation to large-scale atmospheric circulation types. Geophysical Research Abstracts, Vol. 13, Abstract EGU2011-12920. [Available online at http://meetingorganizer.copernicus.org/EGU2011/EGU2011-12920.pdf.]

  • Beck, C., and A. Philipp, 2010: Evaluation and comparison of circulation type classifications for the European domain. Phys. Chem. Earth, 35, 374387.

    • Search Google Scholar
    • Export Citation
  • Bejarán, R. A., and I. A. Camilloni, 2003: Objective method for classifying air masses and application to the analysis of Buenos Aires’ (Argentina) urban heat island intensity. Theor. Appl. Climatol., 74, 93103.

    • Search Google Scholar
    • Export Citation
  • Belleflamme, A., X. Fettweis, and M. Erpicum, 2011: Evaluation of the present and future general circulation over western Europe simulated by the IPCC AR5/CMIP5 GCMs with the help of a circulation type classification. Geophysical Research Abstracts, Vol. 13, Abstract EGU2011-7352. [Available online at http://meetingorganizer.copernicus.org/EGU2011/EGU2011-7352.pdf.]

  • Bissolli, P., J. Grieser, N. Dotzek, and M. Welsch, 2007: Tornadoes in Germany 1950–2003 and their relation to particular weather conditions. Global Planet. Change, 57, 124138.

    • Search Google Scholar
    • Export Citation
  • Boé, J., and L. Terray, 2008: A weather-type approach to analyzing winter precipitation in France: Twentieth-century trends and the role of anthropogenic forcing. J. Climate, 21, 31183133.

    • Search Google Scholar
    • Export Citation
  • Boé, J., L. Terray, F. Habets, and E. Martin, 2006: A simple statistical-dynamical downscaling scheme based on weather types and conditional resampling. J. Geophys. Res., 111, D23106, doi:10.1029/2005JD006889.

    • Search Google Scholar
    • Export Citation
  • Böhm, U., M. Kücken, W. Ahrens, A. Block, D. Hauffe, K. Keuler, B. Rockel, and A. Will, 2006: CLM—The climate version of LM: brief description and long-term applications. COSMO Newsletter, No. 6, 225–235. [Available online at http://cosmo-model.cscs.ch/content/model/documentation/newsLetters/newsLetter06/cnl6_clm.pdf.]

  • Cahynová, M., and R. Huth, 2010: Circulation vs. climatic changes over the Czech Republic: A comprehensive study based on the COST733 database of atmospheric circulation classifications. Phys. Chem. Earth, 35, 422428.

    • Search Google Scholar
    • Export Citation
  • Cassou, C., M. Minvielle, L. Terray, and C. Périgaud, 2011: A statistical–dynamical scheme for reconstructing ocean forcing in the Atlantic. Part I: Weather regimes as predictors for ocean surface variables. Climate Dyn., 36, 1939, doi:10.1007/s00382-010-0781-7.

    • Search Google Scholar
    • Export Citation
  • Christiansen, B., 2007: Atmospheric circulation regimes: Can cluster analysis provide the number? J. Climate, 20, 22292250.

  • Demuzere, M., and N. P. M. van Lipzig, 2010: A new method to estimate air-quality levels using a synoptic-regression approach. Part I: Present-day O3 and PM10 analysis. Atmos. Environ., 44, 13411355.

    • Search Google Scholar
    • Export Citation
  • Demuzere, M., M. Werner, N. P. M. van Lipzig, and E. Roeckner, 2009: An analysis of present and future ECHAM5 pressure fields using a classification of circulation patterns. Int. J. Climatol., 29, 17961810.

    • Search Google Scholar
    • Export Citation
  • Demuzere, M., P. Kassomenos, and A. Philipp, 2010: The COST733 circulation type classification software: An example for surface ozone concentrations in central Europe. Theor. Appl. Climatol., 105, 143166, doi:10.1007/s00704-010-0378-4.

    • Search Google Scholar
    • Export Citation
  • D’onofrio, A., J.-P. Boulanger, and E. Segura, 2010: CHAC: A weather pattern classification system for regional climate downscaling of daily precipitation. Climatic Change, 98, 405427, doi:10.1007/s10584-009-9738-4.

    • Search Google Scholar
    • Export Citation
  • Efron, T., and R. Tibshirani, 1993: An Introduction to the Bootstrap. Chapman and Hall, 436 pp.

  • Enke, W., and A. Spekat, 1997: Downscaling climate model outputs into local and regional weather elements by classification and regression. Climate Res., 8, 195207.

    • Search Google Scholar
    • Export Citation
  • Fereday, D. R., J. R. Knight, A. A. Scaife, and C. K. Folland, 2008: Cluster analysis of North Atlantic–European circulation types and links with tropical Pacific sea surface temperatures. J. Climate, 21, 36873703.

    • Search Google Scholar
    • Export Citation
  • Fuentes, U., and D. Heimann, 2000: An improved statistical-dynamical downscaling scheme and its application to the Alpine precipitation climatology. Theor. Appl. Climatol., 65, 119135.

    • Search Google Scholar
    • Export Citation
  • Gerstengarbe, F., and P. C. Werner, 1997: A method to estimate the statistical confidence of cluster separation. Theor. Appl. Climatol., 57, 103110.

    • Search Google Scholar
    • Export Citation
  • Guentchev, G. S., and J. A. Winkler, 2010: A two-tier atmospheric circulation classification scheme for the European–North Atlantic region. Phys. Chem. Earth, 35, 341351, doi:10.1016/j.pce.2009.12.011.

    • Search Google Scholar
    • Export Citation
  • Hoffmann, P., O. Krueger, and K. H. Schlünzen, 2012: A statistical model for the urban heat island and its application to a climate change scenario. Int. J. Climatol., 32, 12381248, doi:10.1002/joc.2348.

    • Search Google Scholar
    • Export Citation
  • Hollweg, H.-D., and Coauthors, 2008: Ensemble simulations over Europe with the regional climate model CLM forced with IPCC AR4 global scenarios. M & D Tech. Rep. 3, 154 pp.

  • Huth, R., 1996: An intercomparison of computer-assisted circulation classification methods. Int. J. Climatol., 16, 893922.

  • Huth, R., 2010: Synoptic-climatological applicability of circulation classifications from the COST733 collection: First results. Phys. Chem. Earth, 35, 388394.

    • Search Google Scholar
    • Export Citation
  • Huth, R., C. Beck, A. Philipp, M. Demuzere, Z. Ustrnul, M. Cahynova, J. Kyselý, and O. E. Tveito, 2008: Classifications of atmospheric circulation patterns: Recent advances and applications. Ann. N. Y. Acad. Sci., 1146, 105152.

    • Search Google Scholar
    • Export Citation
  • Jacob, D., 2001: A note to the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin. Meteor. Atmos. Phys., 77, 6173.

    • Search Google Scholar
    • Export Citation
  • Jacob, D., and Coauthors, 2001: A comprehensive model intercomparison study investigating the water budget during the PIDCAP period. Meteor. Atmos. Phys., 77, 1943.

    • Search Google Scholar
    • Export Citation
  • Jacob, D., H. Göttel, S. Kotlarski, P. Lorenz, and K. Sieck, 2008: Klimaauswirkungen und Anpassung in Deutschland Phase 1: Erstellung regionaler Klimaszenarien für Deutschland (Climate impacts and adaptation in Germany Phase 1: Creation of regional climate scenarios for Germany). Final Rep. UFOPLAN Project 204 41 13, 154 pp.

  • Jacobeit, J., 2010: Classifications in climate research. Phys. Chem. Earth, 35, 411421.

  • Jungclaus, J. H., M. Botzet, H. Haak, N. Keenlyside, M. Latif, J. Marotzke, U. Mikolajewicz, and E. Roeckner, 2006: Ocean circulation and tropical variability in the model ECHAM5/MPI-OM. J. Climate, 19, 39523972.

    • Search Google Scholar
    • Export Citation
  • Kašpar, M., and M. Müller, 2010: Variants of synoptic-scale patterns inducing heavy rains in the Czech Republic. Phys. Chem. Earth, 35, 477483, doi:10.1016/j.pce.2009.11.004.

    • Search Google Scholar
    • Export Citation
  • Kassomenos, P. A., and B. D. Katsoulis, 2006: Mesoscale and macroscale aspects of the morning urban heat island around Athens, Greece. Meteor. Atmos. Phys., 94, 209218, doi:10.1007/s00703-006-0191-x.

    • Search Google Scholar
    • Export Citation
  • Kostopoulou, E., and P. D. Jones, 2007: Comprehensive analysis of the climate variability in the eastern Mediterranean. Part I: Map-pattern classification. Int. J. Climatol., 27, 11891214.

    • Search Google Scholar
    • Export Citation
  • Kreienkamp, F., A. Spekat, and W. Enke, 2010: Trans weather patterns—An extended outlook for the future climate. Abstracts,10th European Conf. on Applications of Meteorology, Zurich, Switzerland, European Meteor. Soc., EMS2010–453. [Available online at http://adsabs.harvard.edu/abs/2010ems..confE.453K.]

  • Kreienkamp, F., S. Baumgart, A. Spekat, and W. Enke, 2011: Climate signals on the regional scale derived with a statistical method: Relevance of the driving model’s resolution. Atmosphere, 2, 129145, doi:10.3390/atmos2020129.

    • Search Google Scholar
    • Export Citation
  • Kyselý, J., and R. Huth, 2006: Changes in atmospheric circulation over Europe detected by objective and subjective methods. Theor. Appl. Climatol., 85, 1936.

    • Search Google Scholar
    • Export Citation
  • Kyselý, J., and R. Huth, 2010: Comparison of air-mass classifications for evaluating heat-related mortality in Seoul. Phys. Chem. Earth, 35, 536543.

    • Search Google Scholar
    • Export Citation
  • Lupikasza, E., 2010: Relationships between occurrence of high precipitation and atmospheric circulation in Poland using different classifications of circulation types. Phys. Chem. Earth, 35, 448455.

    • Search Google Scholar
    • Export Citation
  • Majewski, D., 1991: The Europa-Modell of the Deutscher Wetterdienst. ECMWF Seminar on Numerical Methods in Atmospheric Models, Vol. 2, 147–191.

  • Mihalakakou, G., H. A. Flocas, M. Santamouris, and C. G. Helmis, 2002: Application of neural networks to the simulation of the heat island over Athens, Greece, using synoptic types as a predictor. J. Appl. Meteor., 41, 519527.

    • Search Google Scholar
    • Export Citation
  • Morris, C. J. G., and I. Simmonds, 2000: Associations between varying magnitudes of the urban heat island and the synoptic climatology in Melbourne, Australia. Int. J. Climatol., 20, 19311954.

    • Search Google Scholar
    • Export Citation
  • Morris, C. J. G., I. Simmonds, and N. Plummer, 2001: Quantification of the influences of wind and cloud on the nocturnal urban heat island of a large city. J. Appl. Meteor., 40, 169182.

    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1973: City size and the urban heat island. Atmos. Environ., 7, 769779.

  • Philipp, A., J. Jacobait, D. R. Fereday, P. D. Jones, A. Moberg, and H. Wanner, 2007: Long-term variability of daily North Atlantic–European pressure patterns since 1850 classified by simulated annealing clustering. J. Climate, 20, 40654095.

    • Search Google Scholar
    • Export Citation
  • Philipp, A., and Coauthors, 2010: Cost733cat—A database of weather and circulation type classification. Phys. Chem. Earth, 35, 360373.

    • Search Google Scholar
    • Export Citation
  • Pinto, J. G., C. P. Neuhaus, G. C. Leckebusch, M. Reyers, and M. Kerschgens, 2010: Estimation of wind storm impacts over western Germany under future climate conditions using a statistical–dynamical downscaling approach. Tellus, 62A, 188201, doi:10.1111/j.1600-0870.2009.00424.x.

    • Search Google Scholar
    • Export Citation
  • Ray, S., and R. H. Turi, 2000. Determination of the number of clusters in K-means clustering and application in colour image segmentation. Proc. Fourth Int. Conf. on Advances in Pattern Recognition and Digital Technique, New Delhi, India, Narosa, 137–143.

  • Reidat, R., 1971: Temperatur, Niederschlag, Staub (Temperature, precipitation, dust). Part 7, German Planning Atlas, Vol. VIII, Publications of the Academy for Spatial Research and Planning, Gebrüder Jänecke.

  • Reusch, D. B., 2010: Nonlinear climatology and paleoclimatology: Capturing patterns of variability and change with self-organizing maps. Phys. Chem. Earth, 35, 329340.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM5. Part I: Model description. Max Planck Institute for Meteorology Rep. 349, 127 pp. [Available online at http://www.mpimet.mpg.de/fileadmin/publikationen/Reports/max_scirep_349.pdf.]

  • Sakakibara, Y., and E. Matsui, 2005: Relation between heat island intensity and city size indices/urban canopy characteristics in settlements of Nagano basin. Geogr. Rev. Japan, 78, 812824.

    • Search Google Scholar
    • Export Citation
  • Sauter, T., and V. Venema, 2011: Natural three-dimensional predictor domains for statistical precipitation downscaling. J. Climate, 24, 61326145.

    • Search Google Scholar
    • Export Citation
  • Schlünzen, K. H., P. Hoffmann, G. Rosenhagen, and W. Riecke, 2010: Long-term changes and regional differences in temperature and precipitation in the metropolitan area of Hamburg. Int. J. Climatol., 30, 11211136, doi:10.1002/joc.1968.

    • Search Google Scholar
    • Export Citation
  • Schoetter, R., P. Hoffmann, D. Rechid, and K. H. Schlünzen, 2012: Evaluation and bias correction of regional climate model results using model evaluation measures. J. Appl. Meteor. Climatol., 51, 16701684.

    • Search Google Scholar
    • Export Citation
  • Shen, J., S. I. Chang, E. S. Lee, Y. Deng, and S. J. Brown, 2005: Determination of cluster number in clustering microarray data. Appl. Math. Comput., 169, 11721185.

    • Search Google Scholar
    • Export Citation
  • Sheridan, S. C., and C. C. Lee, 2010: Synoptic climatology and the general circulation model. Prog. Phys. Geogr., 34, 101109.

  • Spekat, A., F. Kreienkamp, and W. Enke, 2010: An impact-oriented classification method for atmospheric patterns. Phys. Chem. Earth, 35, 352359.

    • Search Google Scholar
    • Export Citation
  • Steeneveld, G. J., S. Koopmans, B. G. Heusinkveld, L. W. A. van Hove, and A. A. M. Holtslag, 2011: Quantifying urban heat island effects and human comfort for cities of variable size and urban morphology in the Netherlands. J. Geophys. Res., 116, D20129, doi:10.1029/2011JD015988.

    • Search Google Scholar
    • Export Citation
  • Stephenson, D. B., A. Hannachi, and A. O’Neill, 2004: On the existence of multiple climate regimes. Quart. J. Roy. Meteor. Soc., 130, 583605.

    • Search Google Scholar
    • Export Citation
  • Steppeler, J., G. Doms, U. Schättler, H. W. Bitzer, A. Gassmann, U. Damrath, and G. Gregoric, 2003: Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteor. Atmos. Phys., 82, 7596.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Wilby, R. L., 2003: Past and projected trends in London’s urban heat island. Weather, 58, 251260, doi:10.1256/wea.183.02.

  • Yow, D. M., 2007: Urban heat islands: Observations, impacts, and adaptation. Geogr. Compass, 1, 12271251.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 712 357 22
PDF Downloads 453 279 19

Weather Pattern Classification to Represent the Urban Heat Island in Present and Future Climate

View More View Less
  • 1 Meteorological Institute, KlimaCampus, University of Hamburg, Hamburg, Germany
Restricted access

Abstract

A classification of weather patterns (WP) is derived that is tailored to best represent situations relevant for the urban heat island (UHI). Three different types of k-means-based cluster methods are conducted. The explained cluster variance is used as a measure for the quality. Several variables of the 700-hPa fields from the 40-yr ECMWF Re-Analysis (ERA-40) were tested for the classification. The variables as well as the domain for the clustering are chosen in a way to explain the variability of the UHI as best as possible. It turned out that the combination of geopotential height, relative humidity, vorticity, and the 1000–700-hPa thickness is best suited. To determine the optimal cluster number k several statistical measures are applied. Except for autumn (k = 12) an optimal cluster number of k = 7 is found. The WP frequency changes are analyzed using climate projections of two regional climate models (RCM). Both RCMs, the Regional Model (REMO) and Climate Limited-Area Model (CLM), are driven with the A1B simulations from the global climate model ECHAM5. Focusing on the periods 2036–65 and 2071–2100, no change can be found of the frequency for the anticyclonic WP when compared with 1971–2000. Since these WPs are favorable for the development of a strong UHI, the frequency of strong UHI days stays the same for the city of Hamburg,Germany. For other WPs changes can be found for both future periods. At the end of the century, a large increase (17%–40%) in the frequency of the zonal WP and a large decrease (20%–26%) in the southwesterly WP are projected.

Corresponding author address: Peter Hoffmann, Meteorological Institute, KlimaCampus, University of Hamburg, Bundesstr. 55, 20146 Hamburg, Germany. E-mail: peter.hoffmann@zmaw.de

Abstract

A classification of weather patterns (WP) is derived that is tailored to best represent situations relevant for the urban heat island (UHI). Three different types of k-means-based cluster methods are conducted. The explained cluster variance is used as a measure for the quality. Several variables of the 700-hPa fields from the 40-yr ECMWF Re-Analysis (ERA-40) were tested for the classification. The variables as well as the domain for the clustering are chosen in a way to explain the variability of the UHI as best as possible. It turned out that the combination of geopotential height, relative humidity, vorticity, and the 1000–700-hPa thickness is best suited. To determine the optimal cluster number k several statistical measures are applied. Except for autumn (k = 12) an optimal cluster number of k = 7 is found. The WP frequency changes are analyzed using climate projections of two regional climate models (RCM). Both RCMs, the Regional Model (REMO) and Climate Limited-Area Model (CLM), are driven with the A1B simulations from the global climate model ECHAM5. Focusing on the periods 2036–65 and 2071–2100, no change can be found of the frequency for the anticyclonic WP when compared with 1971–2000. Since these WPs are favorable for the development of a strong UHI, the frequency of strong UHI days stays the same for the city of Hamburg,Germany. For other WPs changes can be found for both future periods. At the end of the century, a large increase (17%–40%) in the frequency of the zonal WP and a large decrease (20%–26%) in the southwesterly WP are projected.

Corresponding author address: Peter Hoffmann, Meteorological Institute, KlimaCampus, University of Hamburg, Bundesstr. 55, 20146 Hamburg, Germany. E-mail: peter.hoffmann@zmaw.de
Save