Evaluation of Lagrangian Particle Dispersion Models with Measurements from Controlled Tracer Releases

Jennifer Hegarty * Atmospheric and Environmental Research, Lexington, Massachusetts

Search for other papers by Jennifer Hegarty in
Current site
Google Scholar
PubMed
Close
,
Roland R. Draxler NOAA/Air Resources Laboratory, College Park, Maryland

Search for other papers by Roland R. Draxler in
Current site
Google Scholar
PubMed
Close
,
Ariel F. Stein NOAA/Air Resources Laboratory, College Park, Maryland

Search for other papers by Ariel F. Stein in
Current site
Google Scholar
PubMed
Close
,
Jerome Brioude Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado
Chemical Science Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Jerome Brioude in
Current site
Google Scholar
PubMed
Close
,
Marikate Mountain * Atmospheric and Environmental Research, Lexington, Massachusetts

Search for other papers by Marikate Mountain in
Current site
Google Scholar
PubMed
Close
,
Janusz Eluszkiewicz * Atmospheric and Environmental Research, Lexington, Massachusetts

Search for other papers by Janusz Eluszkiewicz in
Current site
Google Scholar
PubMed
Close
,
Thomas Nehrkorn * Atmospheric and Environmental Research, Lexington, Massachusetts

Search for other papers by Thomas Nehrkorn in
Current site
Google Scholar
PubMed
Close
,
Fong Ngan NOAA/Air Resources Laboratory, College Park, Maryland
Cooperative Institute for Climate and Satellites, University of Maryland, College Park, College Park, Maryland

Search for other papers by Fong Ngan in
Current site
Google Scholar
PubMed
Close
, and
Arlyn Andrews ** Global Monitoring Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Arlyn Andrews in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Three widely used Lagrangian particle dispersion models (LPDMs)—the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT), Stochastic Time-Inverted Lagrangian Transport (STILT), and Flexible Particle (FLEXPART) models—are evaluated with measurements from the controlled tracer-release experiments Cross-Appalachian Tracer Experiment (CAPTEX) and Across North America Tracer Experiment (ANATEX). The LPDMs are run forward in time driven by identical meteorological inputs from the North American Regional Reanalysis (NARR) and several configurations of the Weather Research and Forecasting (WRF) model, and the simulations of tracer concentrations are evaluated against the measurements with a ranking procedure derived from the combination of four statistical parameters. The statistical evaluation reveals that all three LPDMs have comparable skill in simulating the tracer plumes when driven by the same meteorological inputs, indicating that the differences in their formulations play a secondary role. Simulations with HYSPLIT and STILT demonstrate the benefit of using customized hourly WRF fields with 10-km horizontal grid spacing over the use of 3-hourly NARR fields with 32-km horizontal grid spacing. All three LPDMs perform better when the WRF wind fields in the planetary boundary layer are nudged to NARR, with FLEXPART benefitting the most. Case studies indicate that the nudging corrects an overestimate in plume transport speed possibly caused by a positive bias in WRF wind speeds near the surface. All three LPDMs also benefit from the use of time-averaged velocity and convective mass flux fields generated by WRF, but the impact on HYSPLIT and STILT is much greater than on FLEXPART. STILT backward runs perform as well as their forward counterparts, demonstrating this model’s reversibility and its suitability for application to inverse flux estimates.

Corresponding author address: Jennifer Hegarty, Atmospheric and Environmental Research, 131 Hartwell Ave., Lexington, MA 02421. E-mail: jhegarty@aer.com

Abstract

Three widely used Lagrangian particle dispersion models (LPDMs)—the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT), Stochastic Time-Inverted Lagrangian Transport (STILT), and Flexible Particle (FLEXPART) models—are evaluated with measurements from the controlled tracer-release experiments Cross-Appalachian Tracer Experiment (CAPTEX) and Across North America Tracer Experiment (ANATEX). The LPDMs are run forward in time driven by identical meteorological inputs from the North American Regional Reanalysis (NARR) and several configurations of the Weather Research and Forecasting (WRF) model, and the simulations of tracer concentrations are evaluated against the measurements with a ranking procedure derived from the combination of four statistical parameters. The statistical evaluation reveals that all three LPDMs have comparable skill in simulating the tracer plumes when driven by the same meteorological inputs, indicating that the differences in their formulations play a secondary role. Simulations with HYSPLIT and STILT demonstrate the benefit of using customized hourly WRF fields with 10-km horizontal grid spacing over the use of 3-hourly NARR fields with 32-km horizontal grid spacing. All three LPDMs perform better when the WRF wind fields in the planetary boundary layer are nudged to NARR, with FLEXPART benefitting the most. Case studies indicate that the nudging corrects an overestimate in plume transport speed possibly caused by a positive bias in WRF wind speeds near the surface. All three LPDMs also benefit from the use of time-averaged velocity and convective mass flux fields generated by WRF, but the impact on HYSPLIT and STILT is much greater than on FLEXPART. STILT backward runs perform as well as their forward counterparts, demonstrating this model’s reversibility and its suitability for application to inverse flux estimates.

Corresponding author address: Jennifer Hegarty, Atmospheric and Environmental Research, 131 Hartwell Ave., Lexington, MA 02421. E-mail: jhegarty@aer.com
Save
  • Brioude, J., and Coauthors, 2011: Top-down estimate of anthropogenic emission inventories and their interannual variability in Houston using a mesoscale inverse modeling technique. J. Geophys. Res., 116, D20305, doi:10.1029/2011JD016215.

    • Search Google Scholar
    • Export Citation
  • Brioude, J., W. M. Angevine, S. A. McKeen, and E.-Y. Hsie, 2012a: Numerical uncertainty at mesoscale in a Lagrangian model in complex terrain. Geosci. Model Dev., 5, 11271136.

    • Search Google Scholar
    • Export Citation
  • Brioude, J., and Coauthors, 2012b: A new inversion method to calculate emission inventories without a prior at mesoscale: Application to the anthropogenic CO2 emission from Houston, Texas. J. Geophys. Res., 117, D05312, doi:10.1029/2011JD016918.

    • Search Google Scholar
    • Export Citation
  • Chang, J. C., and S. R. Hanna, 2004: Air quality model performance evaluation. Meteor. Atmos. Phys., 87, 167196.

  • Deng, A., and D. R. Stauffer, 2006: On improving 4-km mesoscale model simulations. J. Appl. Meteor. Climatol., 45, 361381.

  • Deng, A., N. L. Seaman, G. K. Hunter, and D. R. Stauffer, 2004: Evaluation of interregional transport using the MM5–SCIPUFF system. J. Appl. Meteor., 43, 18641886.

    • Search Google Scholar
    • Export Citation
  • Draxler, R. R., 1999: HYSPLIT_4 user’s guide. NOAA Tech. Memo. ERL ARL-230, 35 pp. [Available online at http://www.arl.noaa.gov/documents/reports/arl-230.pdf.]

  • Draxler, R. R., 2006: The use of global and mesoscale meteorological model data to predict the transport and dispersion of tracer plumes over Washington, D.C. Wea. Forecasting, 21, 383394.

    • Search Google Scholar
    • Export Citation
  • Draxler, R. R., and J. L. Heffter, Eds., 1989: Across North America Tracer Experiment (ANATEX). Volume I: Description, ground-level sampling at primary sites, and meteorology. NOAA Tech Memo ERL ARL-167, 83 pp. [Available online at http://www.arl.noaa.gov/documents/reports/arl-167.pdf.]

  • Draxler, R. R., and G. D. Hess, 1997: Description of the HYSPLIT_4 modeling system. NOAA Tech. Memo. ERL ARL-224, 24 pp. [Available online at http://www.arl.noaa.gov/documents/reports/arl-224.pdf.]

  • Draxler, R. R., and G. D. Hess, 1998: An overview of the HYSPLIT_4 modelling system for trajectories, dispersion, and deposition. Aust. Meteor. Mag., 47, 295308.

    • Search Google Scholar
    • Export Citation
  • Efron, B., 1987: Better bootstrap confidence intervals. J. Amer. Stat. Assoc., 82, 171185.

  • Eluszkiewicz, J., R. S. Hemler, J. D. Mahlman, L. Bruhwiler, and L. L. Takacs, 2000: Sensitivity of age-of-air calculations to the choice of advection scheme. J. Atmos. Sci., 57, 31853201.

    • Search Google Scholar
    • Export Citation
  • Errico, R. M., 1997: What is an adjoint model? Bull. Amer. Meteor. Soc., 78, 25772591.

  • Fast, J. D., and R. Easter, 2006: A Lagrangian particle dispersion model compatible with WRF. Preprints, 7th WRF User’s Workshop, Boulder, CO, NCAR, 6.2. [Available online at http://www.mmm.ucar.edu/wrf/users/workshops/WS2006/abstracts/PSession06/P6_02_Fast.pdf.]

  • Ferber, G. J., J. L. Heffter, R. R. Draxler, R. J. Lagomarsino, F. L. Thomas, and R. N. Dietz, 1986: Cross-Appalachian Tracer Experiment (CAPTEX ‘83) final report. NOAA Tech. Memo. ERL ARL-142, 60 pp. [Available online at http://www.arl.noaa.gov/documents/reports/arl-142.pdf.]

  • Fox, D. G., 1984: Uncertainty in air quality modeling. Bull. Amer. Meteor. Soc., 65, 2736.

  • Gourdji, S. M., and Coauthors, 2012: North American CO2 exchange: Intercomparison of modeled estimates with results from a fine-scale atmospheric inversion. Biogeosciences, 9, 457475.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and D. Devenyi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 1693, doi:10.1029/2002GL015311.

    • Search Google Scholar
    • Export Citation
  • Hanna, S. R., 1982: Applications in air pollution modeling. Atmospheric Turbulence and Air Pollution Modelling, F. T. M. Nieuwstadt and H. van Dop, Eds., D. Reidel, 358 pp.

  • Hanna, S. R., 1989: Confidence limits for air quality model evaluations, as estimated by bootstrap and jackknife resampling methods. Atmos. Environ., 23, 13851398.

    • Search Google Scholar
    • Export Citation
  • Hanna, S. R., 1993: Uncertainties in air quality model predictions. Bound.-Layer Meteor., 62, 320.

  • Henze, D. K., A. Hakami, and J. H. Seinfeld, 2007: Development of the adjoint of GEOS-Chem. Atmos. Chem. Phys., 7, 24132433.

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Jacob, D. J., and Coauthors, 1997: Evaluation and intercomparison of global atmospheric transport models using 222Rn and other short-lived tracers. J. Geophys. Res., 102, 59535970.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., and J. Dudhia, 2012: Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model. J. Appl. Meteor. Climatol., 51, 300316.

    • Search Google Scholar
    • Export Citation
  • Kanthar, L. H., and C. A. Clayson, 2000: Small Scale Processes in Geophysical Fluid Flows. International Geophysics Series, Vol. 67, Academic Press, 883 pp.

  • Kljun, N., M. W. Rotach, and H. P. Schmid, 2002: A 3D backward Lagrangian footprint model for a wide range of boundary layer stratifications. Bound.-Layer Meteor., 103, 205226.

    • Search Google Scholar
    • Export Citation
  • Kort, E. A., and Coauthors, 2008: Emissions of CH4 and N2O over the United States and Canada based on a receptor-oriented modeling framework and COBRA-NA atmospheric observations. Geophys. Res. Lett., 35, L18808, doi:10.1029/2008GL034031.

    • Search Google Scholar
    • Export Citation
  • Lauvaux, T., and Coauthors, 2012: Constraining the CO2 budget of the Corn Belt: Exploring uncertainties from the assumptions in a mesoscale inverse system. Atmos. Chem. Phys., 12, 337354.

    • Search Google Scholar
    • Export Citation
  • Lee, J. A., L. J. Peltier, S. E. Haupt, J. C. Wyngaard, D. R. Stauffer, and A. Deng, 2009: Improving SCIPUFF dispersion forecasts with NWP ensembles. J. Appl. Meteor. Climatol., 48, 23052319.

    • Search Google Scholar
    • Export Citation
  • Lin, J. C., C. Gerbig, S. C. Wofsy, B. C. Daube, A. E. Andrews, K. J. Davis, and C. A. Grainger, 2003: A near-field tool for simulating the upstream influence of atmospheric observations: The Stochastic Time-Inverted Lagrangian Transport (STILT) model. J. Geophys. Res., 108, 4493, doi:10.1029/2002JD003161.

    • Search Google Scholar
    • Export Citation
  • Lin, J. C., D. Brunner, C. Gerbig, A. Stohl, A. Luhar, and P. Webley, 2012: Lagrangian Modeling of the Atmosphere. Geophys. Monogr., Vol. 200, Amer. Geophys. Union, 349 pp.

  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Appl. Meteor., 22, 10651092.

    • Search Google Scholar
    • Export Citation
  • McKain, K., S. C. Wofsy, T. Nehrkorn, J. Eluszkiewicz, J. R. Ehleringer, and B. B. Stephens, 2012: Assessment of ground-based atmospheric observations for verification of greenhouse gas emissions from an urban region. Proc. Natl. Acad. Sci. USA, 109, 84238428.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360.

  • Miller, S. M., and Coauthors, 2012: Regional sources of nitrous oxide over the United States: Seasonal variation and spatial distribution. J. Geophys. Res., 117, D06310, doi:10.1029/2011JD016951.

    • Search Google Scholar
    • Export Citation
  • Mitchell, K., and Coauthors, 2005: The Community Noah Land-Surface Model (LSM) user’s guide, public release version 2.7.1. National Centers for Environmental Prediction/Environmental Modeling Center Tech. Doc., 26 pp. [Available online at ftp://ftp.emc.ncep.noaa.gov/mmb/gcp/ldas/noahlsm/ver_2.7.1/Noah_LSM_USERGUIDE_2.7.1.doc.]

  • Mosca, S., G. Graziani, W. Klug, R. Bellasio, and R. Bianconi, 1998: A statistical methodology for the evaluation of long-range dispersion models: An application to the ETEX exercise. Atmos. Environ., 32, 43074324.

    • Search Google Scholar
    • Export Citation
  • Nehrkorn, T., J. Eluszkiewicz, S. C. Wofsy, J. C. Lin, C. Gerbig, M. Longo, and S. Freitas, 2010: Coupled Weather Research and Forecasting–Stochastic Time-Inverted Lagrangian Transport (WRF-STILT) model. Meteor. Atmos. Phys., 107, 5164.

    • Search Google Scholar
    • Export Citation
  • Schuh, A. E., A. S. Denning, K. D. Corbin, I. T. Baker, M. Uliasz, N. Parazoo, A. E. Andrews, and D. E. J. Worthy, 2010: A regional high-resolution carbon flux inversion of North America for 2004. Biogeosciences, 7, 16251644.

    • Search Google Scholar
    • Export Citation
  • Seibert, P., and A. Frank, 2004: Source–receptor matrix calculation with a Lagrangian particle dispersion model in backward mode. Atmos. Chem. Phys., 4, 5163.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485.

    • Search Google Scholar
    • Export Citation
  • Stauffer, D. R., and N. L. Seaman, 1990: Use of four-dimensional data assimilation in a limited-area mesoscale model. Part I: Experiments with synoptic-scale data. Mon. Wea. Rev., 118, 12501277.

    • Search Google Scholar
    • Export Citation
  • Stauffer, D. R., N. L. Seaman, and F. S. Binkowski, 1991: Use of four-dimensional data assimilation in a limited-area mesoscale model. Part II: Effects of data assimilation within the planetary boundary layer. Mon. Wea. Rev., 119, 734754.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., 1998: Computation, accuracy and applications of trajectories—A review and bibliography. Atmos. Environ., 32, 947966.

  • Stohl, A., M. Hittenberger, and G. Wotawa, 1998: Validation of the Lagrangian particle dispersion model FLEXPART against large-scale tracer experiment data. Atmos. Environ., 32, 42454264.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., C. Forster, A. Frank, P. Seibert, and G. Wotawa, 2005: Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmos. Chem. Phys., 5, 24612474.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., and Coauthors, 2011: Determination of time- and height-resolved volcanic ash emissions and their use for quantitative ash dispersion modeling: The 2010 Eyjafjallajökull eruption. Atmos. Chem. Phys., 11, 43334351.

    • Search Google Scholar
    • Export Citation
  • Thomson, D. J., W. L. Physick, and R. H. Maryon, 1997: Treatment of interfaces in random walk dispersion models. J. Appl. Meteor., 36, 12841295.

    • Search Google Scholar
    • Export Citation
  • Uliasz, M., 1993: The atmospheric mesoscale dispersion modeling system (MDMS). J. Appl. Meteor., 32, 139149.

  • Uliasz, M., 1994: Lagrangian particle modeling in mesoscale applications. Environmental Modeling II, P. Zannetti, Ed., Computational Mechanics Publications, 71–102.

  • Wilson, J. D., B. J. Legg, and D. J. Thomson, 1983: Calculation of particle trajectories in the presence of a gradient in turbulent velocity variance. Bound.-Layer Meteor., 27, 163169.

    • Search Google Scholar
    • Export Citation
  • Wotawa, G., L.-E. DeGeer, A. Becker, R. D’Amours, M. Jean, R. Servranckx, and K. Ungar, 2006: Inter- and intra-continental transport of radioactive cesium released by boreal forest fires. Geophys. Res. Lett., 33, L12806, doi:10.1029/2006GL026206.

    • Search Google Scholar
    • Export Citation
  • Zhao, C., A. E. Andrews, L. Bianco, J. Eluszkiewicz, A. Hirsch, C. MacDonald, T. Nehrkorn, and M. L. Fischer, 2009: Atmospheric inverse estimates of methane emissions from central California. J. Geophys. Res., 114, D16302, doi:10.1029/2008JD011671.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4796 1689 75
PDF Downloads 1982 351 25