• Brazel, A. J., H. J. S. Fernando, J. C. R. Hunt, N. Selover, B. C. Hedquist, and E. R. Pardyjak, 2005: Evening transition observations in Phoenix, Arizona. J. Appl. Meteor., 44, 99112.

    • Search Google Scholar
    • Export Citation
  • Catalano, F., and A. Cenedese, 2010: High-resolution numerical modeling of thermally driven slope winds in a valley with strong capping. J. Appl. Meteor. Climatol., 49, 18591880.

    • Search Google Scholar
    • Export Citation
  • Clements, C. B., C. D. Whiteman, and J. D. Horel, 2003: Cold-air-pool structure and evolution in a mountain basin: Peter Sinks, Utah. J. Appl. Meteor., 42, 752768.

    • Search Google Scholar
    • Export Citation
  • Clements, C. B., W. Yao, S. Zhong, C. D. Whiteman, and T. Horst, 2007: Slope flows observed during METCRAX. Extended Abstracts, 29th Int. Conf. on Alpine Meteorology (ICAM), Chambéry, France, Météo France, 2D.7. [Available online at http://www.cnrm.meteo.fr/icam2007/ICAM2007/extended/manuscript_105.pdf.]

  • Cuxart, J., G. Morales, E. Terradellas, and C. Yagüe, 2002: Study of coherent structures and estimation of the pressure transport terms for the nocturnal stable boundary layer. Bound.-Layer Meteor., 105, 305328.

    • Search Google Scholar
    • Export Citation
  • Cuxart, J., M. A. Jiménez, and D. Martínez, 2007: Nocturnal meso-beta and katabatic flows on a midlatitude island. Mon. Wea. Rev., 135, 918932.

    • Search Google Scholar
    • Export Citation
  • Fast, J., S. Zhong, and C. D. Whiteman, 1996: Boundary layer evolution within a canyonland basin. Part II: Numerical simulations of nocturnal flows and heat budgets. J. Appl. Meteor., 35, 21622178.

    • Search Google Scholar
    • Export Citation
  • Fernando, H. J. S., B. Verhoef, S. Di Sabatino, L. S. Leo, and S. Park, 2013: The Phoenix Evening Transition Flow Experiment (TRANSFLEX). Bound.-Layer Meteor., 147, 443468, doi:10.1007/s10546-012-9795-5.

    • Search Google Scholar
    • Export Citation
  • Fleagle, R. G., 1950: A theory of air drainage. J. Meteor., 7, 227232.

  • Goulart, A., B. Bodmann, M. de Vilhena, P. Soares, and D. Moreira, 2010: On the time evolution of the turbulent kinetic energy spectrum for decaying turbulence in the convective boundary layer. Bound.-Layer Meteor., 138, 6175.

    • Search Google Scholar
    • Export Citation
  • Haiden, T., and C. D. Whiteman, 2005: Katabatic flow mechanisms on a low-angle slope. J. Appl. Meteor., 44, 113126.

  • Heinemann, G., 2002: Modelling and observations of the katabatic flow dynamics over Greenland. Tellus, 54A, 542554.

  • Hoch, S. W., and C. D. Whiteman, 2007: Observations of radiative flux divergence and vertical temperature structure evolution. 24th General Assembly, Int. Union of Geodesy and Geophysics, Perugia, Italy, IUGG, P5003. [Available online at http://www.inscc.utah.edu/~whiteman/METCRAX/images/lwdiv_poster_IUGG.pdf.]

  • Hoch, S. W., and C. D. Whiteman, 2010: Topographic effects on the surface radiation balance in and around Arizona’s Meteor Crater. J. Appl. Meteor. Climatol., 49, 11141128.

    • Search Google Scholar
    • Export Citation
  • Horst, T. W., and D. H. Lenschow, 2009: Attenuation of scalar fluxes measured with spatially-displaced sensors. Bound.-Layer Meteor., 82, 219233.

    • Search Google Scholar
    • Export Citation
  • Hunt, J. C. R., H. J. S. Fernando, and M. Princevac, 2003: Unsteady thermally driven flows on gentle slopes. J. Atmos. Sci., 60, 21692182.

    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., and J. E. Gaynor, 1991: Another look at sonic thermometry. Bound.-Layer Meteor., 56, 401410.

  • Kring, D. A., 2007: Guidebook to the Geology of Barringer Meteorite Crater, Arizona (a.k.a. Meteor Crater). LPI Contribution 1355, Lunar and Planetary Institute, Houston, TX, 150 pp.

  • Lehner, M., and C. D. Whiteman, 2012: The thermally driven cross-basin circulation in idealized basins under varying wind conditions. J. Appl. Meteor. Climatol., 51, 10261045.

    • Search Google Scholar
    • Export Citation
  • Lehner, M., C. D. Whiteman, and S. W. Hoch, 2011: Diurnal cycle of thermally driven cross-basin winds in Arizona’s Meteor Crater. J. Appl. Meteor. Climatol., 50, 729744.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1982: Momentum balance of gravity flows. J. Atmos. Sci., 39, 27012711.

  • Mahrt, L., and S. Larsen, 1982: Small scale drainage flow. Tellus, 34, 579587.

  • Mahrt, L., D. Vickers, R. Nakamura, M. R. Soler, J. L. Sun, S. Burns, and D. H. Lenschow, 2001: Shallow drainage flows. Bound.-Layer Meteor., 101, 243260.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., S. Richardson, N. Seaman, and D. Stauffer, 2010: Non-stationary drainage flows and motions in the cold pool. Tellus, 62A, 698705.

    • Search Google Scholar
    • Export Citation
  • Manins, P. C., and B. L. Sawford, 1979: A model of katabatic winds. J. Atmos. Sci., 36, 619630.

  • Martínez, D., and J. Cuxart, 2009: Assessment of the hydraulic slope flow approach using a mesoscale model. Acta Geophys., 57, 882903.

    • Search Google Scholar
    • Export Citation
  • McNider, R. T., 1982: A note on velocity fluctuations in drainage flows. J. Atmos. Sci., 39, 16581660.

  • Meyers, S. D., B. G. Kelly, and J. J. O’Brien, 1993: An introduction to wavelet analysis in oceanography and meteorology: With application to the dispersion of Yanai waves. Mon. Wea. Rev., 121, 28582866.

    • Search Google Scholar
    • Export Citation
  • Monti, P., H. J. S. Fernando, M. Princevac, W. C. Chan, T. A. Kowalewski, and E. R. Pardyjak, 2002: Observations of flow and turbulence in the nocturnal boundary layer over a slope. J. Atmos. Sci., 59, 25132534.

    • Search Google Scholar
    • Export Citation
  • Nadeau, D. F., E. R. Pardyjak, C. W. Higgins, H. J. S. Fernando, and M. B. Parlange, 2011: A simple model for the afternoon and early evening decay of convective turbulence over different land surfaces. Bound.-Layer Meteor., 141, 301324.

    • Search Google Scholar
    • Export Citation
  • Nadeau, D. F., E. R. Pardyjak, C. W. Higgins, H. Huwald, and M. B. Parlange, 2013: Flow during the evening transition over steep Alpine slopes. Quart. J. Roy. Meteor. Soc., 139, 607624.

    • Search Google Scholar
    • Export Citation
  • Oncley, S. P., and et al., 2007: The energy balance experiment EBEX-2000. Part I: Overview and energy balance. Bound.-Layer Meteor., 123, 128.

    • Search Google Scholar
    • Export Citation
  • Papadopoulos, K. H., and C. G. Helmis, 1999: Evening and morning transition of katabatic flows. Bound.-Layer Meteor., 92, 195227.

  • Papadopoulos, K. H., C. G. Helmis, A. T. Soilemes, J. Kalogiros, P. G. Papageorgas, and D. N. Asimakopoulos, 1997: The structure of katabatic flows down a simple slope. Quart. J. Roy. Meteor. Soc., 123, 15811601.

    • Search Google Scholar
    • Export Citation
  • Prandtl, L., 1942: Führer durch die Strömungslehre (Essentials of Fluid Mechanics). Vieweg und Sohn, 382 pp.

  • Renfrew, I. A., 2004: The dynamics of idealized katabatic flow over a moderate slope and ice shelf. Quart. J. Roy. Meteor. Soc., 130, 10231045.

    • Search Google Scholar
    • Export Citation
  • Schotanus, P., F. T. M. Nieuwstadt, and H. A. R. DeBruin, 1983: Temperature measurement with a sonic anemometer and its application to heat and moisture fluctuations. Bound.-Layer Meteor., 26, 8193.

    • Search Google Scholar
    • Export Citation
  • Serafin, S., and D. Zardi, 2010: Structure of the atmospheric boundary layer in the vicinity of a developing upslope flow system: A numerical model study. J. Atmos. Sci., 67, 11711185.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. E., 1999: Gravity Currents in the Environment and the Laboratory. 2nd ed. Cambridge University Press, 259 pp.

  • Sorbjan, Z., 1997: Decay of convective turbulence revisited. Bound.-Layer Meteor., 82, 503517.

  • Sun, J., S. P. Burns, A. C. Delany, S. P. Oncley, T. W. Horst, and D. H. Lenschow, 2003: Heat balance in the nocturnal boundary layer during CASES-99. J. Appl. Meteor., 42, 16491666.

    • Search Google Scholar
    • Export Citation
  • van Dijk, A., W. Kohsiek, and H. A. R. DeBruin, 2003: Oxygen sensitivity of krypton and Lyman-α hygrometers. J. Atmos. Oceanic Technol., 20, 143151.

    • Search Google Scholar
    • Export Citation
  • Viana, S., C. Yagüe, and G. Maqueda, 2009: Propagation and effects of a mesoscale gravity wave over a weakly-stratified nocturnal boundary layer during the SABLES2006 field campaign. Bound.-Layer Meteor., 133, 165188.

    • Search Google Scholar
    • Export Citation
  • Viana, S., E. Terradellas, and C. Yagüe, 2010: Analysis of gravity waves generated at the top of a drainage flow. J. Atmos. Sci., 67, 39493966.

    • Search Google Scholar
    • Export Citation
  • Webb, E. K., G. I. Pearman, and R. Leuning, 1980: Correction of flux measurements for density effects due to heat and water vapor transfer. Quart. J. Roy. Meteor. Soc., 106, 85100.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., 2000: Mountain Meteorology: Fundamentals and Applications. Oxford University Press, 355 pp.

  • Whiteman, C. D., K. J. Allwine, L. J. Fritschen, M. M. Orgill, and J. R. Simpson, 1989: Deep valley radiation and surface energy budget microclimates. Part II: Energy budget. J. Appl. Meteor., 28, 427437.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., and et al., 2008: METCRAX 2006—Meteorological experiments in Arizona’s Meteor Crater. Bull. Amer. Meteor. Soc., 89, 16651680.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., S. W. Hoch, M. Lehner, and T. Haiden, 2010: Nocturnal cold-air intrusions into a closed basin: Observational evidence and conceptual model. J. Appl. Meteor. Climatol., 49, 18941905.

    • Search Google Scholar
    • Export Citation
  • Wilczak, J. M., S. P. Oncley, and S. A. Stage, 2001: Sonic anemometer tilt correction algorithms. Bound.-Layer Meteor., 99, 127150.

  • Yao, W., and S. Zhong, 2009: Nocturnal temperature inversions in a small, enclosed basin and their relationship to ambient atmospheric conditions. Meteor. Atmos. Phys., 103, 195210.

    • Search Google Scholar
    • Export Citation
  • Zardi, D., and C. D. Whiteman, 2012: Diurnal mountain wind systems. Mountain Weather Research and Forecasting, F. K. Chow, S. F. J. DeWekker, and B. Snyder, Eds., Springer, 35–119.

  • Zhong, S., and C. D. Whiteman, 2008: Downslope flows on a low-angle slope and their interactions with valley inversions. Part II: Numerical modeling. J. Appl. Meteor. Climatol., 47, 20392057.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 203 66 6
PDF Downloads 127 31 2

The Upslope–Downslope Flow Transition on a Basin Sidewall

View More View Less
  • 1 University of the Balearic Islands, Palma de Mallorca, Spain and University of Utah, Salt Lake City, Utah
  • | 2 University of Utah, Salt Lake City, Utah
  • | 3 University of the Balearic Islands, Palma de Mallorca, Spain
Restricted access

Abstract

The late afternoon upslope–downslope flow transition on the west inner sidewall of Arizona’s Meteor Crater, visualized by photographs of smoke dispersion, is investigated for 20 October 2006 using surface radiative and energy budget data and mean and turbulent flow profiles from three towers, two at different distances up the slope and one on the basin floor. The bowl-shaped crater allows the development of the upslope–downslope flow transition with minimal influence from larger-scale motions from outside and avoiding the upvalley–downvalley flow interactions typical of valleys. The slow downslope propagation of the shadow from the west rim causes a change in the surface radiation budget and the consequent loss of heat from the shallow atmospheric layer above the western slope at a time when the sun still heats the crater floor and the inner east sidewall. The onset of the katabatic flow is visualized by the dispersion of the smoke, and the onset occurs at the same time at the two slope towers. The katabatic flow arrives later at the crater floor, cooling the air and contributing to the stabilization of a shallow but strong inversion layer there. A wavelet analysis indicates that the initial upslope current is driven by crater-size scales, whereas the later downslope flow is influenced by the thermal gradient between opposing sidewalls generated by their different cooling rates. A comparison with other days suggests that the timing of the transition is also influenced by the presence of convective eddies in addition to the local energy balance.

Corresponding author address: Daniel Martínez Villagrasa, Zentrum für Angewandte Geowissenschaften, Eberhard Karls Universität Tübingen, Hölderlinstr. 12, 72074 Tübingen, Germany. E-mail: daniel.martinez@uni-tuebingen.de

Abstract

The late afternoon upslope–downslope flow transition on the west inner sidewall of Arizona’s Meteor Crater, visualized by photographs of smoke dispersion, is investigated for 20 October 2006 using surface radiative and energy budget data and mean and turbulent flow profiles from three towers, two at different distances up the slope and one on the basin floor. The bowl-shaped crater allows the development of the upslope–downslope flow transition with minimal influence from larger-scale motions from outside and avoiding the upvalley–downvalley flow interactions typical of valleys. The slow downslope propagation of the shadow from the west rim causes a change in the surface radiation budget and the consequent loss of heat from the shallow atmospheric layer above the western slope at a time when the sun still heats the crater floor and the inner east sidewall. The onset of the katabatic flow is visualized by the dispersion of the smoke, and the onset occurs at the same time at the two slope towers. The katabatic flow arrives later at the crater floor, cooling the air and contributing to the stabilization of a shallow but strong inversion layer there. A wavelet analysis indicates that the initial upslope current is driven by crater-size scales, whereas the later downslope flow is influenced by the thermal gradient between opposing sidewalls generated by their different cooling rates. A comparison with other days suggests that the timing of the transition is also influenced by the presence of convective eddies in addition to the local energy balance.

Corresponding author address: Daniel Martínez Villagrasa, Zentrum für Angewandte Geowissenschaften, Eberhard Karls Universität Tübingen, Hölderlinstr. 12, 72074 Tübingen, Germany. E-mail: daniel.martinez@uni-tuebingen.de
Save