• Anderson, M. E., L. D. Carey, W. A. Petersen, and K. R. Knupp, 2011: C-band dual-polarimetric radar signatures of hail. Electron. J. Oper. Meteor., 2011-EJ02. [Available online at http://www.nwas.org/ej/pdf/2011-EJ2.pdf.]

    • Search Google Scholar
    • Export Citation
  • Atlas, D., and F. H. Ludlam, 1961: Multi-wavelength radar reflectivity of hailstorms. Quart. J. Roy. Meteor. Soc., 87, 523534.

  • Aydin, K., and Y. Zhao, 1990: A computational study of polarimetric radar observables in hail. IEEE Trans. Geosci. Remote Sens., 28, 412422.

    • Search Google Scholar
    • Export Citation
  • Aydin, K., and V. Giridhar, 1991: Polarimetric C-band radar observables in melting hail: A computational study. Preprints, 25th Int. Conf. on Radar Meteorology, Paris, France, Amer. Meteor. Soc., 733736.

  • Aydin, K., T. A. Seliga, and V. Balaji, 1986: Remote sensing of hail with a dual linear polarization radar. J. Climate Appl. Meteor., 25, 14751484.

    • Search Google Scholar
    • Export Citation
  • Aydin, K., V. N. Bringi, and L. Liu, 1995: Rain-rate estimation in the presence of hail using S-band specific differential phase and other radar parameters. J. Appl. Meteor., 34, 404410.

    • Search Google Scholar
    • Export Citation
  • Balakrishnan, N., and D. S. Zrnić, 1990a: Estimation of rain and hail rates in mixed-phase precipitation. J. Atmos. Sci., 47, 565583.

    • Search Google Scholar
    • Export Citation
  • Balakrishnan, N., and D. S. Zrnić, 1990b: Use of polarization to characterize precipitation and discriminate large hail. J. Atmos. Sci., 47, 15251540.

    • Search Google Scholar
    • Export Citation
  • Beard, K. V., 1976: Terminal velocity and shape of cloud and precipitation drops aloft. J. Atmos. Sci., 33, 851864.

  • Boodoo, S., D. Hudak, M. Leduc, A. V. Ryzhkov, N. Donaldson, and D. Hassan, 2009: Hail detection with a C-band dual-polarization radar in the Canadian Great Lakes region. Preprints, 34th Conf. on Radar Meteorology, Williamsburg, VA, Amer. Meteor. Soc., 10A.5. [Available online at http://ams.confex.com/ams/pdfpapers/156032.pdf.]

  • Borowska, L., A. Ryzhkov, D. Zrnić, C. Simmer, and R. Palmer, 2011: Attenuation and differential attenuation of the 5-cm-wavelength radiation in melting hail. J. Appl. Meteor. Climatol., 50, 5976.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., G. Zhang, and J. Vivekanandan, 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteor., 41, 674685.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

  • Bringi, V. N., J. Vivekanandan, and J. D. Tuttle, 1986: Multiparameter radar measurements in Colorado convective storms. Part II: Hail detection studies. J. Atmos. Sci., 43, 25642577.

    • Search Google Scholar
    • Export Citation
  • Carras, J. N., and W. C. Macklin, 1973: The shedding of accreted water during hailstone growth. Quart. J. Roy. Meteor. Soc., 99, 639648.

    • Search Google Scholar
    • Export Citation
  • Cheng, L., and M. English, 1983: A relationship between hailstone concentration and size. J. Atmos. Sci., 40, 204213.

  • Cheng, L., M. English, and R. Wong, 1985: Hailstone size distributions and their relationship to storm thermodynamics. J. Climate Appl. Meteor., 24, 10591067.

    • Search Google Scholar
    • Export Citation
  • Depue, T. K., P. C. Kennedy, and S. A. Rutledge, 2007: Performance of the hail differential reflectivity (HDR) polarimetric radar hail indicator. J. Appl. Meteor. Climatol., 46, 12901301.

    • Search Google Scholar
    • Export Citation
  • Eccles, P. J., and D. Atlas, 1973: A dual-wavelength radar hail detector. J. Appl. Meteor., 12, 847854.

  • Feral, L., H. Sauvageot, and S. Soula, 2003: Hail detection using S- and C-band radar reflectivity difference. J. Atmos. Oceanic Technol., 20, 233248.

    • Search Google Scholar
    • Export Citation
  • Ganson, S., 2012: Investigation of polarimetric radar characteristics of melting hail using advanced T-matrix computations. M.S. thesis, School of Meteorology, University of Oklahoma, 73 pp.

  • Gu, J.-Y., A. Ryzhkov, P. Zhang, P. Neilley, M. Knight, B. Wolf, and D.-I. Lee, 2011: Polarimetric attenuation correction in heavy rain at C band. J. Appl. Meteor., 50, 3958.

    • Search Google Scholar
    • Export Citation
  • Heinselman, P. L., and A. V. Ryzhkov, 2006: Validation of polarimetric hail detection. Wea. Forecasting, 21, 839850.

  • Joe, P. I., and Coauthors, 1976: Loss of accreted water from a growing hailstone. Preprints, Int. Conf. on Cloud Physics, Boulder, CO, Amer. Meteor. Soc., 264269.

  • Jung, Y., G. Zhang, and M. Xue, 2008: Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman filter. Part I: Observation operators for reflectivity and polarimetric variables. Mon. Wea. Rev., 136, 22282245.

    • Search Google Scholar
    • Export Citation
  • Kaltenboeck, R., and A. Ryzhkov, 2013: Comparison of polarimetric signatures of hail at S and C bands for different hail sizes. Atmos. Res., 123, 323336.

    • Search Google Scholar
    • Export Citation
  • Kamra, A. K., R. V. Bhalwankar, and A. B. Sathe, 1991: Spontaneous breakup of charged and uncharged water drops freely suspended in a wind tunnel. J. Geophys. Res., 96, 17 15917 168.

    • Search Google Scholar
    • Export Citation
  • Khain, A., A. Pokrovsky, M. Pinsky, A. Seifert, and V. Phillips, 2004: Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a special microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications. J. Atmos. Sci., 61, 29632982.

    • Search Google Scholar
    • Export Citation
  • Khain, A., D. Rosenfeld, A. Pokrovsky, U. Blahak, and A. Ryzhkov, 2011: The role of CCN in precipitation and hail in a mid-latitude storm as seen in simulations using a spectral (bin) microphysics model in a 2D frame. Atmos. Res., 99, 129146.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., J. C. Picca, S. M. Ganson, A. V. Ryzhkov, J. Krause, D. Zrnić, and A. Khain, 2010: Polarimetric characteristics of large hail. Preprints, 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 11.2. [Available online at https://ams.confex.com/ams/pdfpapers/176043.pdf.]

  • Lesins, G. B., R. List, and P. I. Joe, 1980: Ice accretions. Part I: Testing of new atmospheric icing concepts. J. Rech. Atmos., 14, 347356.

    • Search Google Scholar
    • Export Citation
  • Lim, S., V. Chandrasekar, and V. N. Bringi, 2005: Hydrometeor classification system using dual polarization radar measurements: Model improvements and in situ verification. IEEE Trans. Geosci. Remote Sens., 43, 792801.

    • Search Google Scholar
    • Export Citation
  • Meischner, P. F., V. N. Bringi, D. Heimann, and H. Holler, 1991: A squall line in southern Germany: Kinematics and precipitation formation as deduced by advanced polarimetric and Doppler radar measurements. Mon. Wea. Rev., 119, 678701.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 30653081.

    • Search Google Scholar
    • Export Citation
  • Ortega, K. L., T. M. Smith, K. L. Manross, A. G. Kolodziej, K. A. Scharfenberg, A. Witt, and J. J. Gourley, 2009: The Severe Hazards Analysis and Verification Experiment. Bull. Amer. Meteor. Soc., 90, 15191530.

    • Search Google Scholar
    • Export Citation
  • Park, H.-S., A. Ryzhkov, D. Zrnić, and K.-E. Kim, 2009: The hydrometeor classification algorithm for polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730748.

    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., A. Pokrovsky, and A. Khain, 2007: The influence of time-dependent melting on the dynamics and precipitation production in maritime and continental storm clouds. J. Atmos. Sci., 64, 338359.

    • Search Google Scholar
    • Export Citation
  • Picca, J., and A. Ryzhkov, 2011: Polarimetric radar discrimination between small, large, and giant hail at S band. NOAA/NNSL Rep., 13 pp. [Available online at http://www.nssl.noaa.gov/publications/wsr88d_reports/FINAL2011-Tsk1-Hail.pdf.]

  • Picca, J., and A. Ryzhkov, 2012: A dual-wavelength polarimetric analysis of the 16 May 2010 Oklahoma City extreme hailstorm. Mon. Wea. Rev., 140, 13851403.

    • Search Google Scholar
    • Export Citation
  • Prodi, F., 1970: Measurements of local density in artificial and natural hailstones. J. Appl. Meteor., 9, 903910.

  • Rasmussen, R. M., and A. J. Heymsfield, 1987a: Melting and shedding of graupel and hail. Part I: Model physics. J. Atmos. Sci., 44, 27542763.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., and A. J. Heymsfield, 1987b: Melting and shedding of graupel and hail. Part II: Sensitivity study. J. Atmos. Sci., 44, 27642782.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., V. Levizzani, and H. R. Pruppacher, 1984: A wind tunnel and theoretical study on the melting behavior of atmospheric ice particles: III. Experiment and theory for spherical ice particles of radius > 500 μm. J. Atmos. Sci., 41, 381388.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., 2001: Interpretation of polarimetric radar covariance matrix for meteorological scatterers: Theoretical analysis. J. Atmos. Oceanic Technol., 18, 315328.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., S. E. Giangrande, and T. J. Schuur, 2005: Rainfall estimation with a polarimetric prototype of WSR-88D. J. Appl. Meteor., 44, 502515.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., P. Zhang, D. Hudak, J. L. Alford, M. Knight, and J. W. Conway, 2007: Validation of polarimetric methods for attenuation correction at C band. Preprints, 33rd Conf. on Radar Meteorology, Cairns, Australia, Amer. Meteor. Soc., P11B.12. [Available online at https://ams.confex.com/ams/pdfpapers/123122.pdf.]

  • Ryzhkov, A. V., S. Ganson, A. Khain, M. Pinsky, and A. Pokrovsky, 2009: Polarimetric characteristics of melting hail at S and C bands. Preprints, 34th Conf. on Radar Meteorology, Williamsburg, VA, Amer. Meteor. Soc., 4A.6. [Available online at http://ams.confex.com/ams/pdfpapers/155571.pdf.]

  • Ryzhkov, A. V., M. Pinsky, A. Pokrovsky, and A. Khain, 2011: Polarimetric radar observation operator for a cloud model with spectral microphysics. J. Appl. Meteor. Climatol., 50, 873894.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. R. Kumjian, S. M. Ganson, and P. Zhang, 2013: Polarimetric radar characteristics of melting hail. Part II: Practical implications. J. Appl. Meteor. Climatol., 52, 28712886.

    • Search Google Scholar
    • Export Citation
  • Smith, P. L., D. J. Musil, S. F. Weber, J. F. Spahn, G. N. Johnson, and W. R. Sand, 1976: Raindrop and hailstone distributions inside hailstorms. Preprints, Int. Conf. on Cloud Physics, Boulder, CO, Amer. Meteor. Soc., 252257.

  • Spahn, J. F., and P. L. Smith Jr., 1976: Some characteristics of hailstone size distributions inside hailstorms. Preprints, 17th Conf. Radar Meteorology, Seattle, WA, Amer. Meteor. Soc., 187191.

  • Srivastava, R. C., 1987: A model of intense downdrafts driven by the melting and evaporation of precipitation. J. Atmos. Sci., 44, 17521773.

    • Search Google Scholar
    • Export Citation
  • Tabary, P., G. Vulpiani, J. J. Gourley, A. J. Illingworth, R. J. Thompson, and O. Bosquet, 2009: Unusually high differential attenuation at C band: Results from a two-year analysis of the French Trappes polarimetric radar data. J. Appl. Meteor. Climatol., 48, 20372053.

    • Search Google Scholar
    • Export Citation
  • Tabary, P., and Coauthors, 2010: Hail detection and quantification with C-band polarimetric radars: Results from a two-year objective comparison against hailpads in the south of France. Proc. Sixth European Conf. on Meteorology and Hydrology: Advances in Radar Technology, Sibiu, Romania, ERAD, 98102. [Available online at http://www.erad2010.org/pdf/oral/tuesday/radpol2/2_ERAD2010_0046.pdf.]

  • Ulbrich, C. W., and D. Atlas, 1982: Hail parameter relations: A comprehensive digest. J. Appl. Meteor., 21, 2243.

  • Vivekanandan, J., V. N. Bringi, and R. Raghavan, 1990: Multiparameter radar modeling and observation of melting ice. J. Atmos. Sci., 47, 549563.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and V. N. Bringi, 1988: Dual-polarization observations of microbursts associated with intense convection: The 20 July storm during the MIST project. Mon. Wea. Rev., 116, 15211539.

    • Search Google Scholar
    • Export Citation
  • Wolfson, M. M., R. L. Delanoy, B. E. Forman, R. G. Hallowell, M. L. Pawlak, and P. D. Smith, 1994: Automated microburst wind-shear prediction. Lincoln Lab. J., 7, 399426.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 694 336 26
PDF Downloads 598 314 32

Polarimetric Radar Characteristics of Melting Hail. Part I: Theoretical Simulations Using Spectral Microphysical Modeling

View More View Less
  • 1 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma
  • | 2 The Hebrew University of Jerusalem, Jerusalem, Israel
Restricted access

Abstract

Spectral (bin) microphysics models are used to simulate polarimetric radar variables in melting hail. Most computations are performed in a framework of a steady-state, one-dimensional column model. Vertical profiles of radar reflectivity factor Z, differential reflectivity ZDR, specific differential phase KDP, specific attenuation Ah, and specific differential attenuation ADP are modeled at S, C, and X bands for a variety of size distributions of ice particles aloft. The impact of temperature lapse rate, humidity, vertical air velocities, and ice particle density on the vertical profiles of the radar variables is also investigated. Polarimetric radar signatures of melting hail depend on the degree of melting or the height of the radar resolution volume with respect to the freezing level, which determines the relative fractions of partially and completely melted hail (i.e., rain). Simulated vertical profiles of radar variables are very sensitive to radar wavelength and the slope of the size distribution of hail aloft, which is correlated well with maximal hail size. Analysis of relative contributions of different parts of the hail/rain size spectrum to the radar variables allows explanations of a number of experimentally observed features such as large differences in Z of hail at the three radar wavelengths, unusually high values of ZDR at C band, and relative insensitivity of the measurements at C and X bands to the presence of large hail exceeding 2.5 cm in diameter. Modeling results are consistent with S- and C-band polarimetric radar observations and are utilized in Part II for devising practical algorithms for hail detection and determination of hail size as well as attenuation correction and rainfall estimation in the presence of hail.

Current affiliation: Advanced Study Program, National Center for Atmospheric Research,+ Boulder, Colorado.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Dr. Alexander Ryzhkov, National Weather Center, Suite 4911, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: alexander.ryzhkov@noaa.gov

Abstract

Spectral (bin) microphysics models are used to simulate polarimetric radar variables in melting hail. Most computations are performed in a framework of a steady-state, one-dimensional column model. Vertical profiles of radar reflectivity factor Z, differential reflectivity ZDR, specific differential phase KDP, specific attenuation Ah, and specific differential attenuation ADP are modeled at S, C, and X bands for a variety of size distributions of ice particles aloft. The impact of temperature lapse rate, humidity, vertical air velocities, and ice particle density on the vertical profiles of the radar variables is also investigated. Polarimetric radar signatures of melting hail depend on the degree of melting or the height of the radar resolution volume with respect to the freezing level, which determines the relative fractions of partially and completely melted hail (i.e., rain). Simulated vertical profiles of radar variables are very sensitive to radar wavelength and the slope of the size distribution of hail aloft, which is correlated well with maximal hail size. Analysis of relative contributions of different parts of the hail/rain size spectrum to the radar variables allows explanations of a number of experimentally observed features such as large differences in Z of hail at the three radar wavelengths, unusually high values of ZDR at C band, and relative insensitivity of the measurements at C and X bands to the presence of large hail exceeding 2.5 cm in diameter. Modeling results are consistent with S- and C-band polarimetric radar observations and are utilized in Part II for devising practical algorithms for hail detection and determination of hail size as well as attenuation correction and rainfall estimation in the presence of hail.

Current affiliation: Advanced Study Program, National Center for Atmospheric Research,+ Boulder, Colorado.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Dr. Alexander Ryzhkov, National Weather Center, Suite 4911, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: alexander.ryzhkov@noaa.gov
Save