Polarimetric Radar Characteristics of Melting Hail. Part II: Practical Implications

Alexander V. Ryzhkov Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Alexander V. Ryzhkov in
Current site
Google Scholar
PubMed
Close
,
Matthew R. Kumjian Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Matthew R. Kumjian in
Current site
Google Scholar
PubMed
Close
,
Scott M. Ganson Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Scott M. Ganson in
Current site
Google Scholar
PubMed
Close
, and
Pengfei Zhang Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Pengfei Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The results of theoretical modeling in Part I are utilized to develop practical recommendations for developing the algorithms for hail detection and determination of its size as well as attenuation correction and rainfall estimation in the presence of hail. A new algorithm for discrimination between small hail (with maximal size of less than 2.5 cm), large hail (with diameters between 2.5 and 5.0 cm), and giant hail with size exceeding 5.0 cm is proposed and implemented for applications with the S-band dual-polarization Weather Surveillance Radar-1988 Doppler (WSR-88D) systems. The fuzzy-logic algorithm is based on the combined use of radar reflectivity Z, differential reflectivity ZDR, and cross-correlation coefficient ρhv. The parameters of the membership functions depend on the height of the radar resolution volume with respect to the freezing level, exploiting the size-dependent melting characteristics of hailstones. The attenuation effects in melting hail are quantified in this study, and a novel technique for polarimetric attenuation correction in the presence of hail is suggested. The use of a rainfall estimator that is based on specific differential phase KDP is justified on the basis of the results of theoretical simulations and comparison of actual radar retrievals at S band with gauge measurements for storms containing large hail with diameters exceeding 2.5 cm.

Corresponding author address: Dr. Alexander Ryzhkov, National Weather Center, Suite 4900, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: alexander.ryzhkov@noaa.gov

Current affiliation: Advanced Study Program, National Center for Atmospheric Research, + Boulder, Colorado.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Abstract

The results of theoretical modeling in Part I are utilized to develop practical recommendations for developing the algorithms for hail detection and determination of its size as well as attenuation correction and rainfall estimation in the presence of hail. A new algorithm for discrimination between small hail (with maximal size of less than 2.5 cm), large hail (with diameters between 2.5 and 5.0 cm), and giant hail with size exceeding 5.0 cm is proposed and implemented for applications with the S-band dual-polarization Weather Surveillance Radar-1988 Doppler (WSR-88D) systems. The fuzzy-logic algorithm is based on the combined use of radar reflectivity Z, differential reflectivity ZDR, and cross-correlation coefficient ρhv. The parameters of the membership functions depend on the height of the radar resolution volume with respect to the freezing level, exploiting the size-dependent melting characteristics of hailstones. The attenuation effects in melting hail are quantified in this study, and a novel technique for polarimetric attenuation correction in the presence of hail is suggested. The use of a rainfall estimator that is based on specific differential phase KDP is justified on the basis of the results of theoretical simulations and comparison of actual radar retrievals at S band with gauge measurements for storms containing large hail with diameters exceeding 2.5 cm.

Corresponding author address: Dr. Alexander Ryzhkov, National Weather Center, Suite 4900, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: alexander.ryzhkov@noaa.gov

Current affiliation: Advanced Study Program, National Center for Atmospheric Research, + Boulder, Colorado.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Save
  • Al-Sakka, H., A.-A. Boumahmoud, B. Fradon, S. J. Frasier, and P. Tabary, 2013: A new fuzzy logic hydrometeor classification scheme applied to the French X-, C-, and S-band polarimetric radars. J. Appl. Meteor. Climatol., 52, 23282344.

    • Search Google Scholar
    • Export Citation
  • Aydin, K., V. N. Bringi, and L. Liu, 1995: Rain-rate estimation in the presence of hail using S-band specific differential phase and other radar parameters. J. Appl. Meteor., 34, 404410.

    • Search Google Scholar
    • Export Citation
  • Balakrishnan, N., and D. S. Zrnić, 1990a: Estimation of rain and hail rates in mixed-phase precipitation. J. Atmos. Sci., 47, 565583.

    • Search Google Scholar
    • Export Citation
  • Balakrishnan, N., and D. S. Zrnić, 1990b: Use of polarization to characterize precipitation and discriminate large hail. J. Atmos. Sci., 47, 15251540.

    • Search Google Scholar
    • Export Citation
  • Battan, L. J., 1971: Radar attenuation by wet ice spheres. J. Appl. Meteor., 10, 247252.

  • Boodoo, S., D. Hudak, M. Leduc, A. V. Ryzhkov, N. Donaldson, and D. Hassan, 2009: Hail detection with a C-band dual-polarization radar in the Canadian Great Lakes region. Preprints, 34th Conf. on Radar Meteorology, Williamsburg, VA, Amer. Meteor. Soc., 10A.5. [Available online at http://ams.confex.com/ams/pdfpapers/156032.pdf.]

  • Borowska, L., A. Ryzhkov, D. Zrnić, C. Simmer, and R. Palmer, 2011: Attenuation and differential attenuation of the 5-cm-wavelength radiation in melting hail. J. Appl. Meteor. Climatol., 50, 5976.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

  • Bringi, V. N., V. Chandrasekar, N. Balakrishnan, and D. S. Zrnić, 1990: An examination of propagation effects in rainfall on polarimetric variables at microwave frequencies. J. Atmos. Oceanic Technol., 7, 829840.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., T. D. Keenan, and V. Chandrasekar, 2001: Correcting C-band reflectivity and differential reflectivity data for rain attenuation: A self-consistent method with constraints. IEEE Trans. Geosci. Remote Sens., 39, 19061915.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., S. A. Rutledge, D. A. Ahijevych, and T. D. Keenan, 2000: Correcting propagation effects in C-band polarimetric radar observations of tropical convection using differential propagation phase. J. Appl. Meteor., 39, 14051433.

    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., R. Keranen, S. Lim, and D. Moisseev, 2013: Recent advances in classification observations from dual polarization weather radars. Atmos. Res., 119, 97111.

    • Search Google Scholar
    • Export Citation
  • Depue, T. K., P. C. Kennedy, and S. A. Rutledge, 2007: Performance of the hail differential reflectivity (HDR) polarimetric radar hail indicator. J. Appl. Meteor. Climatol., 46, 12901301.

    • Search Google Scholar
    • Export Citation
  • Dolan, B., and S. A. Rutledge, 2009: A theory-based hydrometeor identification algorithm for X-band polarimetric radars. J. Atmos. Oceanic Technol., 26, 20712088.

    • Search Google Scholar
    • Export Citation
  • Dolan, B., S. A. Rutledge, S. Lim, V. Chandrasekar, and M. Thurai, 2013: A robust C-band hydrometeor identification algorithm and application to a long-term polarimetric radar dataset. J. Appl. Meteor. Climatol., 52 , 2162 2186.

    • Search Google Scholar
    • Export Citation
  • Gu, J.-Y., A. Ryzhkov, P. Zhang, P. Neilley, M. Knight, B. Wolf, and D.-I. Lee, 2011: Polarimetric attenuation correction in heavy rain at C band. J. Appl. Meteor., 50, 3958.

    • Search Google Scholar
    • Export Citation
  • Heinselman, P. L., and A. V. Ryzhkov, 2006: Validation of polarimetric hail detection. Wea. Forecasting, 21, 839850.

  • Hubbert, J., V. N. Bringi, L. D. Carey, and S. Bolen, 1998: CSU-CHILL polarimetric radar measurements from a severe hail storm in eastern Colorado. J. Appl. Meteor., 37, 749775.

    • Search Google Scholar
    • Export Citation
  • Kaltenboeck, R., and A. Ryzhkov, 2013: Comparison of polarimetric signatures of hail at S and C bands for different hail sizes. Atmos. Res., 123, 323336.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 19401961.

    • Search Google Scholar
    • Export Citation
  • Lim, S., V. Chandrasekar, and V. N. Bringi, 2005: Hydrometeor classification system using dual polarization radar measurements: Model improvements and in situ verification. IEEE Trans. Geosci. Remote Sens., 43, 792801.

    • Search Google Scholar
    • Export Citation
  • Marzano, F. S., D. Scaranari, M. Montopoli, and G. Vulpiani, 2008: Supervised classification and estimation of hydrometeors from C-band dual-polarized radars: A Bayesian approach. IEEE Trans. Geosci. Remote Sens., 46, 8598.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., R. Cifelli, and D. Gochis, 2013: Measurements of heavy convective rainfall in the presence of hail in flood-prone areas using an X-band polarimetric radar. J. Appl. Meteor. Climatol., 52 , 395 407.

    • Search Google Scholar
    • Export Citation
  • Mirkovic, D., D. Zrnić, and A. Ryzhkov, 2013: Full wave EM calculation of polarimetric variables for the atmospheric scatterers with nonspheroidal shape. Proc. USNC–URSI National Radio Science Meeting, Boulder, CO, International Union of Radio Science, 72.

  • Ortega, K. L., T. M. Smith, K. L. Manross, A. G. Kolodziej, K. A. Scharfenberg, A. Witt, and J. J. Gourley, 2009: The Severe Hazards Analysis and Verification Experiment. Bull. Amer. Meteor. Soc., 90, 15191530.

    • Search Google Scholar
    • Export Citation
  • Ortega, K. L., M. Kumjian, A. Ryzhkov, and J. Krause, 2012: Verification of a small, large and giant hail discrimination algorithm for dual-polarized WSR-88D radars using high resolution reports. Abstracts, 2012 Annual Meeting, National Weather Association, Madison, WI, P2.24. [Available online at http://www.nwas.org/meetings/abstracts/display.php?id=1521.]

  • Palmer, R. D., and Coauthors, 2011: Observations of the 10 May 2010 tornado outbreak using OU-PRIME: Potential for new science with high-resolution polarimetric radar. Bull. Amer. Meteor. Soc., 92, 871891.

    • Search Google Scholar
    • Export Citation
  • Park, H.-S., A. Ryzhkov, D. Zrnić, and K.-E. Kim, 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730748.

    • Search Google Scholar
    • Export Citation
  • Picca, J., and A. Ryzhkov, 2012: A dual-wavelength polarimetric analysis of the 16 May 2010 Oklahoma City extreme hailstorm. Mon. Wea. Rev., 140, 13851403.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., and A. J. Heymsfield, 1987: Melting and shedding of graupel and hail. Part I: Model physics. J. Atmos. Sci., 44, 27542763.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., 2007: The impact of beam broadening on the quality of radar polarimetric data. J. Atmos. Oceanic Technol., 24, 729744.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., S. E. Giangrande, and T. J. Schuur, 2005: Rainfall estimation with a polarimetric prototype of WSR-88D. J. Appl. Meteor., 44, 502515.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., P. Zhang, D. Hudak, J. L. Alford, M. Knight, and J. W. Conway, 2007: Validation of polarimetric methods for attenuation correction at C band. Preprints, 33rd Int. Conf. on Radar Meteorology, Cairns, Australia, Amer. Meteor. Soc., P11B.12. [Available online at https://ams.confex.com/ams/pdfpapers/123122.pdf.]

  • Ryzhkov, A. V., S. Ganson, A. Khain, M. Pinsky, and A. Pokrovsky, 2009: Polarimetric characteristics of melting hail at S and C bands. Preprints, 34th Conf. on Radar Meteorology, Williamsburg, VA, Amer. Meteor. Soc., 4A.6. [Available online at http://ams.confex.com/ams/pdfpapers/155571.pdf.]

  • Ryzhkov, A. V., M. Pinsky, A. Pokrovsky, and A. Khain, 2011: Polarimetric radar observation operator for a cloud model with spectral microphysics. J. Appl. Meteor. Climatol., 50, 873894.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. R. Kumjian, S. M. Ganson, A. P. Khain, 2013: Polarimetric radar characteristics of melting hail. Part I: Theoretical simulations using spectral microphysical modeling. J. Appl. Meteor. Climatol., 52, 28492870.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. Diederich, P. Zhang, and C. Simmer, 2014: Potential utilization of specific attenuation for rainfall estimation, mitigation of partial beam blockage, and radar networking. J. Atmos. Oceanic Technol., in press, doi:10.1175/JTECH-D-13-00038.1.

    • Search Google Scholar
    • Export Citation
  • Schuur, T. J., A. V. Ryzhkov, and D. R. Clabo, 2005: Climatological analysis of DSDs in Oklahoma as revealed by 2D-video disdrometer and polarimetric WSR-88D. Preprints, 32nd Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., 15R.4. [Available online at https://ams.confex.com/ams/pdfpapers/95995.pdf.]

  • Schuur, T. J., H.-S. Park, A. Ryzhkov, and H. Reeves, 2012: Classification of precipitation types during transitional winter weather using the RUC model and polarimetric radar retrievals. J. Appl. Meteor. Climatol., 51, 763779.

    • Search Google Scholar
    • Export Citation
  • Tabary, P., G. Vulpiani, J. J. Gourley, A. J. Illingworth, R. J. Thompson, and O. Bosquet, 2009: Unusually high differential attenuation at C band: Results from a two-year analysis of the French Trappes polarimetric radar data. J. Appl. Meteor. Climatol., 48, 20372053.

    • Search Google Scholar
    • Export Citation
  • Testud, J., E. Le Bouar, E. Obligis, and M. Ali-Mehenni, 2000: The rain profiling algorithm applied to polarimetric weather radar. J. Atmos. Oceanic Technol., 17, 332356.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., and D. Atlas, 1982: Hail parameter relations: A comprehensive digest. J. Appl. Meteor., 21, 2243.

  • Vivekanandan, J., D. S. Zrnić, S. M. Ellis, D. Oye, A. V. Ryzhkov, and J. Straka, 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381388.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2011: National Mosaic and Multi-Sensor QPE (NMQ) system: Description, results, and future plans. Bull. Amer. Meteor. Soc., 92, 13211338.

    • Search Google Scholar
    • Export Citation
  • Zhang, P., D. Zrnić, and A. Ryzhkov, 2013: Partial beam blockage correction using polarimetric radar measurements. J. Atmos. Oceanic Technol., 30, 861872.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D., and A. Ryzhkov, 1999: Polarimetry for weather surveillance radars. Bull. Amer. Meteor. Soc., 80, 389406.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2792 1280 45
PDF Downloads 1497 300 18