Retrieval of Ice Cloud Properties from AIRS and MODIS Observations Based on a Fast High-Spectral-Resolution Radiative Transfer Model

Chenxi Wang * Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Chenxi Wang in
Current site
Google Scholar
PubMed
Close
,
Ping Yang * Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Ping Yang in
Current site
Google Scholar
PubMed
Close
,
Steven Platnick Earth Sciences Division, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Steven Platnick in
Current site
Google Scholar
PubMed
Close
,
Andrew K. Heidinger NOAA/NESDIS/Center for Satellite Applications and Research, Madison, Wisconsin

Search for other papers by Andrew K. Heidinger in
Current site
Google Scholar
PubMed
Close
,
Bryan A. Baum Space Science and Engineering Center, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Bryan A. Baum in
Current site
Google Scholar
PubMed
Close
,
Thomas Greenwald Space Science and Engineering Center, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Thomas Greenwald in
Current site
Google Scholar
PubMed
Close
,
Zhibo Zhang University of Maryland, Baltimore County, Baltimore, Maryland

Search for other papers by Zhibo Zhang in
Current site
Google Scholar
PubMed
Close
, and
Robert E. Holz Space Science and Engineering Center, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Robert E. Holz in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A computationally efficient high-spectral-resolution cloudy-sky radiative transfer model (HRTM) in the thermal infrared region (700–1300 cm−1, 0.1 cm−1 spectral resolution) is advanced for simulating the upwelling radiance at the top of atmosphere and for retrieving cloud properties. A precomputed transmittance database is generated for simulating the absorption contributed by up to seven major atmospheric absorptive gases (H2O, CO2, O3, O2, CH4, CO, and N2O) by using a rigorous line-by-line radiative transfer model (LBLRTM). Both the line absorption of individual gases and continuum absorption are included in the database. A high-spectral-resolution ice particle bulk scattering properties database is employed to simulate the radiation transfer within a vertically nonisothermal ice cloud layer. Inherent to HRTM are sensor spectral response functions that couple with high-spectral-resolution measurements in the thermal infrared regions from instruments such as the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer. When compared with the LBLRTM and the discrete ordinates radiative transfer model (DISORT), the root-mean-square error of HRTM-simulated single-layer cloud brightness temperatures in the thermal infrared window region is generally smaller than 0.2 K. An ice cloud optical property retrieval scheme is developed using collocated AIRS and Moderate Resolution Imaging Spectroradiometer (MODIS) data. A retrieval method is proposed to take advantage of the high-spectral-resolution instrument. On the basis of the forward model and retrieval method, a case study is presented for the simultaneous retrieval of ice cloud optical thickness τ and effective particle size Deff that includes a cloud-top-altitude self-adjustment approach to improve consistency with simulations.

Corresponding author address: Chenxi Wang, Dept. of Atmospheric Sciences, Texas A&M University, College Station, TX 77843. E-mail: chenx.wang@geos.tamu.edu

Abstract

A computationally efficient high-spectral-resolution cloudy-sky radiative transfer model (HRTM) in the thermal infrared region (700–1300 cm−1, 0.1 cm−1 spectral resolution) is advanced for simulating the upwelling radiance at the top of atmosphere and for retrieving cloud properties. A precomputed transmittance database is generated for simulating the absorption contributed by up to seven major atmospheric absorptive gases (H2O, CO2, O3, O2, CH4, CO, and N2O) by using a rigorous line-by-line radiative transfer model (LBLRTM). Both the line absorption of individual gases and continuum absorption are included in the database. A high-spectral-resolution ice particle bulk scattering properties database is employed to simulate the radiation transfer within a vertically nonisothermal ice cloud layer. Inherent to HRTM are sensor spectral response functions that couple with high-spectral-resolution measurements in the thermal infrared regions from instruments such as the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer. When compared with the LBLRTM and the discrete ordinates radiative transfer model (DISORT), the root-mean-square error of HRTM-simulated single-layer cloud brightness temperatures in the thermal infrared window region is generally smaller than 0.2 K. An ice cloud optical property retrieval scheme is developed using collocated AIRS and Moderate Resolution Imaging Spectroradiometer (MODIS) data. A retrieval method is proposed to take advantage of the high-spectral-resolution instrument. On the basis of the forward model and retrieval method, a case study is presented for the simultaneous retrieval of ice cloud optical thickness τ and effective particle size Deff that includes a cloud-top-altitude self-adjustment approach to improve consistency with simulations.

Corresponding author address: Chenxi Wang, Dept. of Atmospheric Sciences, Texas A&M University, College Station, TX 77843. E-mail: chenx.wang@geos.tamu.edu
Save
  • Arking, A., and K. Grossman, 1972: The influence of line shape and band structure on temperatures in planetary atmospheres. J. Atmos. Sci., 29, 937949.

    • Search Google Scholar
    • Export Citation
  • Armbruster, W., and J. Fischer, 1996: Improved method of exponential sum fitting of transmissions to describe the absorption of atmospheric gases. Appl. Opt., 35, 19311941.

    • Search Google Scholar
    • Export Citation
  • Aumann, H. H., and Coauthors, 2003: AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems. IEEE Trans. Geosci. Remote Sens., 41, 253264.

    • Search Google Scholar
    • Export Citation
  • Baran, A. J., 2005: The dependence of cirrus infrared radiative properties on ice crystal geometry and shape of the size-distribution function. Quart. J. Roy. Meteor. Soc., 131, 11291142.

    • Search Google Scholar
    • Export Citation
  • Baran, A. J., and P. N. Francis, 2004: On the radiative properties of cirrus cloud at solar and thermal wavelengths: A test of model consistency using high-resolution airborne radiance measurements. Quart. J. Roy. Meteor. Soc., 130, 763778.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., A. J. Heymsfield, P. Yang, and S. T. Bedka, 2005: Bulk scattering properties for the remote sensing of ice clouds. Part I: Microphysical data and models. J. Appl. Meteor., 44, 18851895.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., P. Yang, S. L. Nasiri, A. K. Heidinger, A. J. Heymsfield, and J. Li, 2007: Bulk scattering properties for the remote sensing of ice clouds. Part III: High-resolution spectral models from 100 to 3250 cm−1. J. Appl. Meteor. Climatol., 46, 423434.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., P. Yang, A. J. Heymsfield, C. G. Schmitt, Y. Xie, A. Bansemer, Y. Hu, and Z. Zhang, 2011: Improvements in shortwave bulk scattering and absorption models for the remote sensing of ice clouds. J. Appl. Meteor. Climatol., 50, 10371056.

    • Search Google Scholar
    • Export Citation
  • Blumstein, D., and Coauthors, 2004: IASI instrument: Technical overview and measured performances. Infrared Spaceborne Remote Sensing XII, M. Strojnik, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 5543), 196–207.

  • Clough, S. A., F. X. Kneizys, and R. W. Davies, 1989: Line shape and the water vapor continuum. Atmos. Res., 23, 229241.

  • Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transfer, 91, 233244.

    • Search Google Scholar
    • Export Citation
  • Cooper, S. J., and T. J. Garrett, 2010: Identification of small ice cloud particles using passive radiometric observations. J. Appl. Meteor. Climatol., 49, 23342347.

    • Search Google Scholar
    • Export Citation
  • DeSlover, D. H., W. H. Smith, P. Piironen, and E. W. Eloranta, 1999: A methodology for measuring cirrus cloud visible to infrared spectral optical depth ratios. J. Atmos. Oceanic Technol., 16, 251262.

    • Search Google Scholar
    • Export Citation
  • Dubuisson, P., V. Giraud, O. Chomette, H. Chepfer, and J. Pelon, 2005: Fast radiative transfer modeling for infrared imaging radiometry. J. Quant. Spectrosc. Radiat. Transfer, 95, 201220.

    • Search Google Scholar
    • Export Citation
  • Eguchi, N., T. Yokota, and G. Inoue, 2007: Characteristics of cirrus clouds from ICESat/GLAS observations. Geophys. Res. Lett., 34, L09810, doi:10.1029/2007GL029529.

    • Search Google Scholar
    • Export Citation
  • Gallery, W. O., F. X. Kneizys, and S. A. Clough, 1983: Air mass computer program for atmospheric transmittance/radiance calculations: FSCATM. Air Force Geophys. Laboratory Rep. AFGL-TR-83-0065, Hanscom AFB, MA, 145 pp. [NTIS ADA-175173.]

  • Goody, R., R. West, L. Chen, and D. Crisp, 1989: The correlated-k method for radiation calculations in nonhomogeneous atmospheres. J. Quant. Spectrosc. Radiat. Transfer, 42, 539550.

    • Search Google Scholar
    • Export Citation
  • Hansen, J. E., and J. W. Hovenier, 1971: The doubling method applied to multiple scattering of polarized light. J. Quant. Spectrosc. Radiat. Transfer, 11, 809812.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and D. A. Short, 1980: On the use of earth radiation budget statistics for studies of clouds and climate. J. Atmos. Sci., 37, 12331250.

    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., C. O’Dell, R. Bennartz, and T. Greenwald, 2006: The successive-order-of-interaction radiative transfer model. Part I: Model development. J. Appl. Meteor. Climatol., 45, 13881402.

    • Search Google Scholar
    • Export Citation
  • Herman, G. F., M. C. Wu, and W. T. Johnson, 1980: The effect of clouds on the earth’s solar and infrared radiation budgets. J. Atmos. Sci., 37, 12511261.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and J. Iaquinta, 2000: Cirrus crystal terminal velocities. J. Atmos. Sci., 57, 916938.

  • Heymsfield, A. J., A. Bansemer, P. R. Field, S. L. Durden, J. L. Stith, J. E. Dye, W. Hall, and C. A. Grainger, 2002: Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59, 34573491.

    • Search Google Scholar
    • Export Citation
  • Huang, H.-L., P. Yang, H. Wei, B. A. Baum, Y.-X. Hu, P. Antonelli, and S. A. Ackerman, 2004: Inference of ice cloud properties from high-spectral resolution infrared observations. IEEE Trans. Geosci. Remote Sens., 42, 842852.

    • Search Google Scholar
    • Export Citation
  • Huang, X. L., Y. L. Yung, and J. S. Margolis, 2003: Use of high-resolution measurements for the retrieval of temperature and gas concentration profiles from outgoing infrared spectra in the presence of cirrus clouds. Appl. Opt., 42, 21552165.

    • Search Google Scholar
    • Export Citation
  • Kahn, B. H., and Coauthors, 2003: Near micron-sized cirrus cloud particles in high-resolution infrared spectra: An orographic case study. Geophys. Res. Lett., 30, 1441, doi:10.1029/2003GL016909.

  • Kahn, B. H., A. Eldering, M. Ghil, S. Bordoni, and S. A. Clough, 2004: Sensitivity analysis of cirrus cloud properties from high-resolution infrared spectra. Part I: Methodology and synthetic cirrus. J. Climate, 17, 48564870.

    • Search Google Scholar
    • Export Citation
  • Kratz, D. P., 1995: The correlated k-distribution technique as applied to the AVHRR channels. J. Quant. Spectrosc. Radiat. Transfer, 53, 501517.

    • Search Google Scholar
    • Export Citation
  • Lacis, A., and V. Oinas, 1991: A description of the correlated k distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres. J. Geophys. Res., 96, 90279063.

    • Search Google Scholar
    • Export Citation
  • Lacis, A., W. C. Wang, and J. Hansen, 1979: Correlated k-distribution method for radiative transfer in climate models: Application to effect of cirrus clouds on climate. NASA Conf. Publ., 2076, 309314.

    • Search Google Scholar
    • Export Citation
  • Li, J., W. P. Menzel, W. Zhang, F. Sun, T. J. Schmit, J. Gurka, and E. Weisz, 2004: Synergistic use of MODIS and AIRS in a variational retrieval of cloud parameters. J. Appl. Meteor., 43, 16191634.

    • Search Google Scholar
    • Export Citation
  • Liu, X., W. L. Smith, D. K. Zhou, and A. Larar, 2006: Principal component-based radiative transfer model for hyperspectral sensors. Appl. Opt., 45, 201209.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., A. J. Heymsfield, J. Spinhirne, and B. Hart, 2000: Thin and subvisual tropopause tropical cirrus: Observations and radiative impacts. J. Atmos. Sci., 57, 18411853.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. A. Clough, and D. C. Tobin, 2003: The MT_CKD water vapor continuum: A revised perspective including collision induced effects. Proc. 10th Conf. on Atmospheric Science from Space using Fourier Transform Spectrometry, Bad Wildbad, Germany, Institut für Meteorologie und Klimaforschung. [Available online at http://www-imk.fzk.de/asf/ame/ClosedProjects/assfts/O_I_7_Clough_SA.pdf.]

  • Moncet, J. L., G. Uymin, A. E. Lipton, and H. E. Snell, 2008: Infrared radiance modeling by optimal spectral sampling. J. Atmos. Sci., 65, 39173934.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., and M. D. King, 1990: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory. J. Atmos. Sci., 47, 18781893.

    • Search Google Scholar
    • Export Citation
  • Niu, J., P. Yang, H. L. Huang, J. E. Davies, J. Li, B. A. Baum, and Y. X. Hu, 2007: A fast infrared radiative transfer model for overlapping clouds. J. Quant. Spectrosc. Radiat. Transfer, 103, 447459.

    • Search Google Scholar
    • Export Citation
  • Ohring, G., and P. Clapp, 1980: The effect of changes in cloud amount on the net radiation at the top of the atmosphere. J. Atmos. Sci., 37, 447454.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2008: The GEOS-5 data assimilation system—Documentation of versions 5.0.1, 5.1.0, and 5.2.0. NASA Tech. Rep. Series on Global Modeling and Data Assimilation 27, NASA/TM-2008-104606, 1–118. [Available online at http://gmao.gsfc.nasa.gov/pubs/docs/Rienecker369.pdf.]

  • Rothman, L. S., and Coauthors, 2005: The HITRAN 2004 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer, 96, 139204.

    • Search Google Scholar
    • Export Citation
  • Saunders, R., M. Matricardi, and P. Brunel, 1999: An improved fast radiative transfer model for assimilation of satellite radiance observations. Quart. J. Roy. Meteor. Soc., 125, 14071425.

    • Search Google Scholar
    • Export Citation
  • Saunders, R., P. Brunel, S. English, P. Bauer, U. O’Keeffe, P. Francis, and P. Rayer, 2006: RTTOV-8—Science and validation report. Met Office Forecasting and Research Tech. Doc. NWPSAF-MO-TV-007, 46 pp.

  • Stamnes, K., S. C. Tsay, W. Wiscombe, and K. Jayaweera, 1988: Numerically stable algorithm for discrete-ordinate-method. Appl. Opt., 27, 25022509.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 2005: Cloud feedbacks in the climate system: A critical review. J. Climate, 18, 237273.

  • Tobin, D. C., H. E. Revercomb, C. C. Moeller, and T. S. Pagano, 2006: Use of atmospheric infrared sounder high-spectral resolution spectra to assess the calibration of Moderate Resolution Imaging Spectroradiometer on EOS Aqua. J. Geophys. Res., 111, D09S05, doi:10.1029/2005JD006095.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., N. Jacobowitz, and H. B. Howell, 1966: Matrix methods for multiple-scattering problems. J. Atmos. Sci., 23, 289296.

  • Wang, C., P. Yang, B. A. Baum, S. Platnick, A. K. Heidinger, Y. X. Hu, and R. E. Holz, 2011: Retrieval of ice cloud optical thickness and effective particle size using a fast infrared radiative transfer model. J. Appl. Meteor. Climatol., 50, 22832297.

    • Search Google Scholar
    • Export Citation
  • Wei, H., P. Yang, J. Li, B. A. Baum, H. L. Huang, S. Platnick, Y. X. Hu, and L. Strow, 2004: Retrieval of semitransparent ice cloud optical thickness from Atmospheric Infrared Sounder (AIRS) measurements. IEEE Trans. Geosci. Remote Sens., 42, 22542266.

    • Search Google Scholar
    • Export Citation
  • Wei, H., X. Chen, R. Rao, Y. Wang, and P. Yang, 2007: A moderate-spectral-resolution transmittance model based on fitting the line-by-line calculation. Opt. Express, 15, 83608370.

    • Search Google Scholar
    • Export Citation
  • Wiscombe, W. J., and J. W. Evans, 1997: Exponential-sum fitting of radiative transmission functions. J. Comput. Phys., 24, 416444.

  • Xie, Y., P. Yang, G. W. Kattawar, P. Minnis, and Y. X. Hu, 2009: Effect of the inhomogeneity of the ice crystals on retrieving ice cloud optical thickness and effective particle size. J. Geophys. Res., 114, D11203, doi:10.1029/2008JD011216.

    • Search Google Scholar
    • Export Citation
  • Yang, P., H. Wei, H. L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu, 2005: Scattering and absorption property database for nonspherical ice particles in the near-through far-infrared spectral region. Appl. Opt., 44, 55125523.

    • Search Google Scholar
    • Export Citation
  • Yue, Q., and K. N. Liou, 2009: Cirrus cloud optical and microphysical properties determined from AIRS infrared spectra. Geophys. Res. Lett., 36, L05810, doi:10.1029/2008GL036502679.

    • Search Google Scholar
    • Export Citation
  • Yue, Q., K. N. Liou, and S. C. Ou, 2007: Interpretation of AIRS data in thin cirrus atmospheres based on a fast radiative transfer model. J. Atmos. Sci., 64, 38273842.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., and Coauthors, 2004: Geometric optics solution to light scattering by droxtal ice crystals. Appl. Opt., 43, 24902499.

  • Zhang, Z., and Coauthors, 2007: A fast infrared radiative transfer model based on the adding-doubling method for hyperspectral remote-sensing applications. J. Quant. Spectrosc. Radiat. Transfer, 105, 243263.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., P. Yang, G. W. Kattawar, J. Riedi, L.-C. Labonnote, B. A. Baum, S. Platnick, and H. L. Huang, 2009: Influence of ice particle model on satellite ice cloud retrieval: Lessons learned from MODIS and POLDER cloud product comparison. Atmos. Chem. Phys., 9, 71157129.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., S. Platnick, P. Yang, A. K. Heidinger, and J. M. Comstock, 2010: Effects of ice particle size vertical inhomogeneity on the passive remote sensing of ice clouds. J. Geophys. Res., 115, D17203, doi:10.1029/2010JD013835.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 319 118 7
PDF Downloads 314 59 3