Evaluation of Satellite-Based and Reanalysis Precipitation Data in the Tropical Pacific

Uwe Pfeifroth Deutscher Wetterdienst, Offenbach am Main, and Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany

Search for other papers by Uwe Pfeifroth in
Current site
Google Scholar
PubMed
Close
,
Richard Mueller Deutscher Wetterdienst, Offenbach am Main, Germany

Search for other papers by Richard Mueller in
Current site
Google Scholar
PubMed
Close
, and
Bodo Ahrens Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany

Search for other papers by Bodo Ahrens in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Global precipitation monitoring is essential for understanding the earth’s water and energy cycle. Therefore, usage of satellite-based precipitation data is necessary where in situ data are rare. In addition, atmospheric-model-based reanalysis data feature global data coverage and offer a full catalog of atmospheric variables including precipitation. In this study, two model-based reanalysis products, the interim reanalysis by the European Centre for Medium-Range Weather Forecasts (ERA-Interim) and NASA’s Modern-Era Retrospective Analysis for Research and Applications (MERRA), as well as two satellite-based datasets obtained by the Global Precipitation Climatology Centre (GPCP) and Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data (HOAPS) are evaluated. The evaluation is based on monthly precipitation in the tropical Pacific Ocean during the time period 1989–2005. Rain-gauge atoll station data provided by the Pacific Rainfall Database (PACRAIN) are used as ground-based reference. It is shown that the analyzed precipitation datasets offer temporal correlations ranging from 0.7 to 0.8 for absolute amounts and from 0.6 to 0.75 for monthly anomalies. Average monthly deviations are in the range of 20%–30%. GPCP offers the highest correlation and lowest monthly deviations with reference to PACRAIN station data. The HOAPS precipitation data perform in the range of the reanalysis precipitation datasets. In high native spatial resolution, HOAPS reveals deficiencies owing to its relatively sparse temporal coverage. This result emphasizes that temporal coverage is critical for controlling the performance of precipitation monitoring. Both reanalysis products show similar systematic behaviors in overestimating small and medium precipitation amounts and underestimating high amounts.

Corresponding author address: Uwe Pfeifroth, Deutscher Wetterdienst, Frankfurter Strasse 135, 63067 Offenbach am Main, Germany. E-mail: uwe.pfeifroth@dwd.de

Abstract

Global precipitation monitoring is essential for understanding the earth’s water and energy cycle. Therefore, usage of satellite-based precipitation data is necessary where in situ data are rare. In addition, atmospheric-model-based reanalysis data feature global data coverage and offer a full catalog of atmospheric variables including precipitation. In this study, two model-based reanalysis products, the interim reanalysis by the European Centre for Medium-Range Weather Forecasts (ERA-Interim) and NASA’s Modern-Era Retrospective Analysis for Research and Applications (MERRA), as well as two satellite-based datasets obtained by the Global Precipitation Climatology Centre (GPCP) and Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data (HOAPS) are evaluated. The evaluation is based on monthly precipitation in the tropical Pacific Ocean during the time period 1989–2005. Rain-gauge atoll station data provided by the Pacific Rainfall Database (PACRAIN) are used as ground-based reference. It is shown that the analyzed precipitation datasets offer temporal correlations ranging from 0.7 to 0.8 for absolute amounts and from 0.6 to 0.75 for monthly anomalies. Average monthly deviations are in the range of 20%–30%. GPCP offers the highest correlation and lowest monthly deviations with reference to PACRAIN station data. The HOAPS precipitation data perform in the range of the reanalysis precipitation datasets. In high native spatial resolution, HOAPS reveals deficiencies owing to its relatively sparse temporal coverage. This result emphasizes that temporal coverage is critical for controlling the performance of precipitation monitoring. Both reanalysis products show similar systematic behaviors in overestimating small and medium precipitation amounts and underestimating high amounts.

Corresponding author address: Uwe Pfeifroth, Deutscher Wetterdienst, Frankfurter Strasse 135, 63067 Offenbach am Main, Germany. E-mail: uwe.pfeifroth@dwd.de
Save
  • Adler, R. F., C. Kidd, G. Petty, M. Morissey, and H. M. Goodman, 2001: Intercomparison of global precipitation products: The Third Precipitation Intercomparison Project (PIP-3). Bull. Amer. Meteor. Soc., 82, 13771396.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., G. Gu, and G. J. Huffman, 2012: Estimating climatological bias errors for the Global Precipitation Climatology Project (GPCP). J. Appl. Meteor. Climatol., 51, 4899.

    • Search Google Scholar
    • Export Citation
  • Ahrens, B., and A. Beck, 2008: On upscaling of rain-gauge data for evaluating numerical weather forecasts. Meteor. Atmos. Phys., 99, 155167.

    • Search Google Scholar
    • Export Citation
  • Andersson, A., K. Fennig, C. Klepp, S. Bakan, H. Gral, and J. Schulz, 2010: The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data—HOAPS-3. Earth Syst. Sci. Data, 2, 215234.

    • Search Google Scholar
    • Export Citation
  • Andersson, A., C. Klepp, S. Bakan, H. Grassl, and J. Schulz, 2011: Evaluation of HOAPS-3 ocean surface freshwater flux components. J. Appl. Meteor. Climatol., 50, 379398.

    • Search Google Scholar
    • Export Citation
  • Béranger, K., B. Barnier, S. Gulev, and M. Crépon, 2006: Comparing 20 years of precipitation estimates from different sources over the World Ocean. Ocean Dyn., 56, 104138.

    • Search Google Scholar
    • Export Citation
  • Bowman, K. P., 2005: Comparison of TRMM precipitation retrievals with rain gauge data from ocean buoys. J. Climate, 18, 178190.

  • Bowman, K. P., A. B. Philips, and G. R. North, 2003: Comparison of TRMM rainfall retrievals with rain gauge date from the TOA/TRITON buoy array. Geophys. Res. Lett., 30, 1757, doi:10.1029/2003GL017552.

    • Search Google Scholar
    • Export Citation
  • Bowman, K. P., C. R. Homeyer, and D. G. Stone, 2009: A comparison of oceanic precipitation estimates in the tropics and subtropics. J. Appl. Meteor. Climatol., 48, 13351344.

    • Search Google Scholar
    • Export Citation
  • Cleveland, W. S., 1981: LOWESS: A program for smoothing scatterplots by robust locally weighted regression. Amer. Stat., 35, 54.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597.

    • Search Google Scholar
    • Export Citation
  • Dobler, A., and B. Ahrens, 2010: Analysis of the Indian summer monsoon system in the regional climate model COSMO-CLM. J. Geophys. Res., 115, D16101, doi:10.1029/2009JD013497.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., 1997: Special Sensor Microwave Imager derived global rainfall estimates for climatological applications. J. Geophys. Res., 102, 16 71516 735.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., F. Weng, N. C. Grody, and A. Basist, 1996: An eight-year (1987–1994) time series of rainfall, clouds, water vapor, snow cover, and sea ice derived from SSM/I measurements. Bull. Amer. Meteor. Soc., 77, 891905.

    • Search Google Scholar
    • Export Citation
  • Greene, J. S., M. Klatt, M. Morrisey, and S. Postawko, 2008: The Comprehensive Pacific Rainfall Database. J. Atmos. Oceanic Technol., 25, 7182.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, and G. Gu, 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, LI17808, doi:10.1029/2009GL040000.

    • Search Google Scholar
    • Export Citation
  • Jones, P. W., 1999: First- and second-order conservative remapping schemes for spherical coordinates. Mon. Wea. Rev., 127, 22042210.

  • Kidd, C., and G. Huffman, 2011: Review global precipitation measurement. Meteor. Appl., 18, 334353.

  • Kidd, C., and V. Levizzani, 2011: Status of satellite precipitation retrievals. Hydrol. Earth Syst. Sci., 15, 11091116.

  • Klepp, C.-P., S. Bakan, and H. Grassl, 2003: Improvements of satellite-derived cyclonic rainfall over the North Atlantic. J. Climate, 16, 657669.

    • Search Google Scholar
    • Export Citation
  • Morrissey, M. L., 1991: Using sparse raingages to test satellite-based rainfall algorithms. J. Geophys. Res., 96, 18 56118 571.

  • Muggeo, V. M. R., 2008: Segmented: An R package to fit regression models with broken-line relationships. R News,8 (1), 20–25.

  • New, M., M. Todd, M. Hulme, and P. Jones, 2001: Precipitation measurements and trends in the twentieth century. Int. J. Climatol., 21, 18991922.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648.

    • Search Google Scholar
    • Export Citation
  • Sato, T., H. Miura, M. Satoh, Y. N. Takayabu, and Y. Wang, 2009: Diurnal cycle of precipitation in the tropics simulated in a global cloud-resolving model. J. Climate, 22, 48094826.

    • Search Google Scholar
    • Export Citation
  • Shin, D.-B., J.-H. Kim, and H. j. Park, 2011: Agreement between monthly precipitation estimates from TRMM satellite, NCEP reanalysis, and merged gauge-satellite analysis. J. Geophys. Res., 116, D16105, doi:10.1029/2010JD015483.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., C. D. Burleyson, and S. E. Yuter, 2011: Rain on small tropical islands. J. Geophys. Res., 116, D08102, doi:10.1029/2010JD014695.

    • Search Google Scholar
    • Export Citation
  • Tian, Y., and C. D. Peters-Lidard, 2010: A global map of uncertainties in satellite-based precipitation measurements. Geophys. Res. Lett., 37, L244407, doi:10.1029/2010GL046008.

    • Search Google Scholar
    • Export Citation
  • Wilheit, T. T., A. T. C. Chang, M. S. V. Rao, E. B. Rodgers, and J. S. Theon, 1977: A satellite technique for quantitative mapping rainfall rates over the oceans. J. Appl. Meteor., 16, 551560.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 608 278 16
PDF Downloads 356 89 6