An Improvement of Roughness Height Parameterization of the Surface Energy Balance System (SEBS) over the Tibetan Plateau

Xuelong Chen Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China, and Faculty of Geo-Information Science and Earth Observation, University of Twente, Enschede, Netherlands

Search for other papers by Xuelong Chen in
Current site
Google Scholar
PubMed
Close
,
Zhongbo Su Faculty of Geo-Information Science and Earth Observation, University of Twente, Enschede, Netherlands

Search for other papers by Zhongbo Su in
Current site
Google Scholar
PubMed
Close
,
Yaoming Ma Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China

Search for other papers by Yaoming Ma in
Current site
Google Scholar
PubMed
Close
,
Kun Yang Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China

Search for other papers by Kun Yang in
Current site
Google Scholar
PubMed
Close
,
Jun Wen Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu, China

Search for other papers by Jun Wen in
Current site
Google Scholar
PubMed
Close
, and
Yu Zhang Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu, China

Search for other papers by Yu Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Roughness height for heat transfer is a crucial parameter in the estimation of sensible heat flux. In this study, the performance of the Surface Energy Balance System (SEBS) has been tested and evaluated for typical land surfaces on the Tibetan Plateau on the basis of time series of observations at four sites with bare soil, sparse canopy, dense canopy, and snow surface, respectively. Both under- and overestimation at low and high sensible heat fluxes by SEBS was discovered. Through sensitivity analyses, it was identified that these biases are related to the SEBS parameterization of bare soil’s excess resistance to heat transfer (kB−1, where k is the von Kármán constant and B−1 is the Stanton number). The kB−1 of bare soil in SEBS was replaced. The results show that the revised model performs better than the original model.

Corresponding author address: Xuelong Chen, Faculty of Geo-Information Science and Earth Observation, Water Resources Dept., University of Twente, Hengelostraat 99, 7514 AE Enschede, Netherlands. E-mail: chen24746@itc.nl

Abstract

Roughness height for heat transfer is a crucial parameter in the estimation of sensible heat flux. In this study, the performance of the Surface Energy Balance System (SEBS) has been tested and evaluated for typical land surfaces on the Tibetan Plateau on the basis of time series of observations at four sites with bare soil, sparse canopy, dense canopy, and snow surface, respectively. Both under- and overestimation at low and high sensible heat fluxes by SEBS was discovered. Through sensitivity analyses, it was identified that these biases are related to the SEBS parameterization of bare soil’s excess resistance to heat transfer (kB−1, where k is the von Kármán constant and B−1 is the Stanton number). The kB−1 of bare soil in SEBS was replaced. The results show that the revised model performs better than the original model.

Corresponding author address: Xuelong Chen, Faculty of Geo-Information Science and Earth Observation, Water Resources Dept., University of Twente, Hengelostraat 99, 7514 AE Enschede, Netherlands. E-mail: chen24746@itc.nl
Save
  • Arck, M., and D. Scherer, 2002: Problems in the determination of sensible heat flux over snow. Geogr. Ann., 84A, 157169.

  • Aubinet, M., 2008: Eddy covariance CO2 flux measurements in nocturnal conditions: An analysis of the problem. Ecol. Appl., 18, 13681378, doi:10.1890/06-1336.1.

    • Search Google Scholar
    • Export Citation
  • Bache, D. H., 1986: Momentum transfer to plant canopies: Influence of structure and variable drag. Atmos. Environ., 20, 13691378.

  • Beljaars, A. C. M., and A. A. M. Holtslag, 1991: Flux parameterization over land surfaces for atmospheric models. J. Appl. Meteor., 30, 327341.

    • Search Google Scholar
    • Export Citation
  • Brutsaert, W., Ed., 1982: Evaporation into the Atmosphere: Theory, History, and Application. D. Reidel, 299 pp.

  • Chen, Y., K. Yang, D. Zhou, J. Qin, and X. Guo, 2010: Improving the Noah land surface model in arid regions with an appropriate parameterization of the thermal roughness length. J. Hydrometeor., 11, 9951006.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., K. Yang, J. He, J. Qin, J. Shi, J. Du, and Q. He, 2011: Improving land surface temperature modeling for dry land of China. J. Geophys. Res., 116, D20104, doi:10.1029/2011jd015921.

    • Search Google Scholar
    • Export Citation
  • Foken, T., and B. Wichura, 1996: Tools for quality assessment of surface-based flux measurements. Agric. For. Meteor., 78, 83105.

  • Gockede, M., C. Rebmann, and T. Foken, 2004: A combination of quality assessment tools for eddy covariance measurements with footprint modelling for the characterisation of complex sites. Agric. For. Meteor., 127, 175188.

    • Search Google Scholar
    • Export Citation
  • Guo, X., and Coauthors, 2011: Critical evaluation of scalar roughness length parametrizations over a melting valley glacier. Bound.-Layer Meteor., 139, 307332.

    • Search Google Scholar
    • Export Citation
  • Helgason, W., and J. Pomeroy, 2011: Problems closing the energy balance over a homogeneous snow cover during midwinter. J. Hydrometeor., 13, 557572.

    • Search Google Scholar
    • Export Citation
  • Kanda, M., M. Kanega, T. Kawai, R. Moriwaki, and H. Sugawara, 2007: Roughness lengths for momentum and heat derived from outdoor urban scale models. J. Appl. Meteor. Climatol., 46, 10671079.

    • Search Google Scholar
    • Export Citation
  • Lüers, J., and J. Bareiss, 2010: The effect of misleading surface temperature estimations on the sensible heat fluxes at a high Arctic site—The Arctic Turbulence Experiment 2006 on Svalbard (ARCTEX-2006). Atmos. Chem. Phys., 10, 157168.

    • Search Google Scholar
    • Export Citation
  • Ma, Y., Z. Su, T. Koike, T. Yao, H. Ishikawa, K. Ueno, and M. Menenti, 2003: On measuring and remote sensing surface energy partitioning over the Tibetan Plateau—From GAME/Tibet to CAMP/Tibet. Phys. Chem. Earth, 28, 6374.

    • Search Google Scholar
    • Export Citation
  • Ma, Y., S. Kang, L. Zhu, B. Xu, L. Tian, and T. Yao, 2008a: Tibetan Observation and Research Platform: Atmosphere–land interaction over a heterogeneous landscape. Bull. Amer. Meteor. Soc., 89, 14871492.

    • Search Google Scholar
    • Export Citation
  • Ma, Y., M. Menenti, R. Feddes, and J. Wang, 2008b: Analysis of the land surface heterogeneity and its impact on atmospheric variables and the aerodynamic and thermodynamic roughness lengths. J. Geophys. Res., 113, D08113, doi:10.1029/2007JD009124.

    • Search Google Scholar
    • Export Citation
  • Ma, Y., and Coauthors, 2009: Recent advances on the study of atmosphere–land interaction observations on the Tibetan Plateau. Hydrol. Earth Syst. Sci., 13, 11031111, doi:10.5194/hess-13-1103-2009.

    • Search Google Scholar
    • Export Citation
  • Ma, Y., L. Zhong, B. Wang, W. Ma, X. Chen, and M. Li, 2011: Determination of land surface heat fluxes over heterogeneous landscape of the Tibetan Plateau by using the MODIS and in situ data. Atmos. Chem. Phys., 11, 10 46110 469.

    • Search Google Scholar
    • Export Citation
  • Marks, D., A. Winstral, G. Flerchinger, M. Reba, J. Pomeroy, T. Link, and K. Elder, 2008: Comparing simulated and measured sensible and latent heat fluxes over snow under a pine canopy to improve an energy balance snowmelt model. J. Hydrometeor., 9, 15061522.

    • Search Google Scholar
    • Export Citation
  • Massman, W. J., 1997: An analytical one-dimensional second-order closure model of turbulence statistics and the Lagrangian time scale within and above plant canopies of arbitrary structure. Bound.-Layer Meteor., 83, 407421.

    • Search Google Scholar
    • Export Citation
  • Mauder, M., and T. Foken, 2011: Documentation and instruction manual of the eddy covariance software package TK2. Universität Bayreuth Arbeitsgebnisse Nr. 46, 60 pp. [Available online at http://opus4.kobv.de/opus4-ubbayreuth/frontdoor/index/index/docId/681.]

  • McMillen, R., 1988: An eddy correlation technique with extended applicability to non-simple terrain. Bound.-Layer Meteor., 43, 231245.

    • Search Google Scholar
    • Export Citation
  • Moore, C. J., 1986: Frequency response corrections for eddy correlation systems. Bound.-Layer Meteor., 37, 1735.

  • Oku, Y., H. Ishikawa, and Z. Su, 2007: Estimation of land surface heat fluxes over the Tibetan Plateau using GMS data. J. Appl. Meteor. Climatol., 46, 183195.

    • Search Google Scholar
    • Export Citation
  • Owen, P. R., and W. R. Thomson, 1963: Heat transfer across rough surfaces. J. Fluid Mech., 15, 321334.

  • Sheppard, P. A., 1958: Transfer across the earth’s surface and through the air above. Quart. J. Roy. Meteor. Soc., 84, 205224.

  • Sobrino, J. A., J. C. Jiménez-Muñoz, and L. Paolini, 2004: Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ., 90, 434440.

    • Search Google Scholar
    • Export Citation
  • Su, H., M. F. McCabe, E. F. Wood, Z. Su, and J. H. Prueger, 2005: Modeling evapotranspiration during SMACEX: Comparing two approaches for local- and regional-scale prediction. J. Hydrometeor., 6, 910922.

    • Search Google Scholar
    • Export Citation
  • Su, Z., 2002: The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci., 6, 8599.

  • Su, Z., T. Schmugge, W. P. Kustas, and W. J. Massman, 2001: An evaluation of two models for estimation of the roughness height for heat transfer between the land surface and the atmosphere. J. Appl. Meteor., 40, 19331951.

    • Search Google Scholar
    • Export Citation
  • Su, Z., T. Zhang, Y. Ma, L. Jia, and J. Wen, 2006: Energy and water cycle over the Tibetan Plateau: Surface energy balance and turbulent heat fluxes. Adv. Earth Sci., 21, 12241236.

    • Search Google Scholar
    • Export Citation
  • Tao, S.-Y., and Y.-H. Ding, 1981: Observational evidence of the influence of the Qinghai-Xizang (Tibet) Plateau on the occurrence of heavy rain and severe convective storms in China. Bull. Amer. Meteor. Soc., 62, 2330.

    • Search Google Scholar
    • Export Citation
  • Van der Kwast, J., and Coauthors, 2009: Evaluation of the Surface Energy Balance System (SEBS) applied to ASTER imagery with flux-measurements at the SPARC 2004 site (Barrax, Spain). Hydrol. Earth Syst. Sci., 13, 13371347.

    • Search Google Scholar
    • Export Citation
  • Verhoef, W., M. Menenti, and S. Azzali, 1996: A colour composite of NOAA-AVHRR-NDVI based on time series analysis (1981–1992). Int. J. Remote Sens., 17, 231235.

    • Search Google Scholar
    • Export Citation
  • Vickers, D., and L. Mahrt, 1997: Quality control and flux sampling problems for tower and aircraft data. J. Atmos. Oceanic Technol., 14, 512526.

    • Search Google Scholar
    • Export Citation
  • Wang, S., and Y. Ma, 2011: Characteristics of land–atmosphere interaction parameters over the Tibetan Plateau. J. Hydrometeor., 12, 702708.

    • Search Google Scholar
    • Export Citation
  • Wang, S., Y. Zhang, S. , H. Liu, and L. Shang, 2013: Estimation of turbulent fluxes using the flux-variance method over alpine meadows surface in eastern Tibetan Plateau. Adv. Atmos. Sci., 30, 411424.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., X. Xu, A. R. Lupo, P. Li, and Z. Yin, 2011: The remote effect of the Tibetan Plateau on downstream flow in early summer. J. Geophys. Res., 116, D19108, doi:10.1029/2011jd015979.

    • Search Google Scholar
    • Export Citation
  • Webb, E. K., G. I. Pearman, and R. Leuning, 1980: Correction of flux measurements for density effects due to heat and water vapour transfer. Quart. J. Roy. Meteor. Soc., 106, 85100.

    • Search Google Scholar
    • Export Citation
  • Wilczak, J., S. Oncley, and S. Stage, 2001: Sonic anemometer tilt correction algorithms. Bound.-Layer Meteor., 99, 127150.

  • Yang, D., H. Chen, and H. Lei, 2010: Estimation of evapotranspiration using a remote sensing model over agricultural land in the North China Plain. Int. J. Remote Sens., 31, 37833798.

    • Search Google Scholar
    • Export Citation
  • Yang, K., T. Koike, H. Fujii, K. Tamagawa, and N. Hirose, 2002: Improvement of surface flux parametrizations with a turbulence-related length. Quart. J. Roy. Meteor. Soc., 128, 20732087.

    • Search Google Scholar
    • Export Citation
  • Yang, K., and Coauthors, 2008: Turbulent flux transfer over bare-soil surfaces: Characteristics and parameterization. J. Appl. Meteor. Climatol., 47, 276290.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., and R. E. Dickinson, 1998: Effect of surface sublayer on surface skin temperature and fluxes. J. Climate, 11, 537550.

  • Zhang, X., 2010: Simulation of the bare soil surface energy balance at the Tongyu reference site in semiarid area of north China. Atmos. Oceanic Sci. Lett., 3, 330335.

    • Search Google Scholar
    • Export Citation
  • Zhou, D., R. Eigenmann, W. Babel, T. Foken, and Y. Ma, 2010: The study of near-ground free convection conditions at Nam Co station on the Tibetan Plateau. Theor. Appl. Climatol., 105, 112.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1000 364 20
PDF Downloads 693 225 16