• Anderberg, M. R., 1973: Cluster Analysis for Applications. Academic Press, 399 pp.

  • Bony, S., and J.-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, doi:10.1029/2005GL023851.

    • Search Google Scholar
    • Export Citation
  • Comstock, J. M., T. P. Ackerman, and G. G. Mace, 2002: Ground-based lidar and radar remote sensing of tropical cirrus clouds at Nauru Island: Cloud statistics and radiative impacts. J. Geophys. Res., 107, 4714, doi:10.1029/2002JD002203.

    • Search Google Scholar
    • Export Citation
  • Comstock, J. M., R-F. Lin, D. O’C. Starr, and P. Yang, 2008: Understanding ice supersaturation, particle growth, and number concentration in cirrus clouds. J. Geophys. Res., 113, D23211, doi:10.1029/2008JD010332.

    • Search Google Scholar
    • Export Citation
  • Dufresne, J.-L., and S. Bony, 2008: An assessment of the primary sources of spread of global warming estimates from coupled atmosphere–ocean models. J. Climate, 21, 51355144.

    • Search Google Scholar
    • Export Citation
  • Gordon, N. D., and J. R. Norris, 2010: Cluster analysis of midlatitude oceanic cloud regimes—Part 1: Mean cloud and meteorological properties. Atmos. Chem. Phys. Discuss., 10, 15591593.

    • Search Google Scholar
    • Export Citation
  • Gordon, N. D., J. R. Norris, C. P. Weaver, and S. A. Klein, 2005: Cluster analysis of cloud regimes and characteristic dynamics of midlatitude synoptic systems in observations and a model. J. Geophys. Res., 110, D15S17, doi:10.1029/2004JD005027.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 1977: Precipitation development in stratiform ice clouds. J. Atmos. Sci., 34, 367381.

  • Im, E., S. L. Durden, and C. Wu, 2006: Cloud profiling radar for the CloudSat mission. IEEE Aerosp. Electron. Syst. Mag., 20, 1518.

  • Jakob, C., 2003: Objective identification of cloud regimes in the tropical western Pacific. Geophys. Res. Lett., 30, 2082, doi:10.1029/2003GL018367.

    • Search Google Scholar
    • Export Citation
  • Jakob, C., G. Tselioudis, and T. Hume, 2005: The radiative, cloud, and thermodynamic properties of the major tropical western pacific cloud regimes. J. Climate, 18, 12031214.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kärcher, B., 2012: Supersaturation fluctuations in cirrus clouds driven by colored noise. J. Atmos. Sci., 69, 435444.

  • Kärcher, B., and U. Burkhardt, 2008: A cirrus cloud scheme for general circulation models. Quart. J. Roy. Meteor. Soc., 134, 14391461.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP-NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247267.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., 2010: Cloud properties and radiative forcing over the maritime storm tracks of the Southern Ocean and North Atlantic as derived from A-Train. J. Geophys. Res., 115, D10201, doi:10.1029/2009JD012517.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., and S. Benson, 2008: The vertical structure of cloud occurrence and radiative forcing at the SGP ARM site as revealed by 8 years of continuous data. J. Climate, 21, 25912610.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., D. O’C. Starr, T. P. Ackerman, and P. Minnis, 1995: Examination of coupling between an upper tropospheric cloud system and synoptic scale dynamics diagnosed from wind profiler and radiosonde data. J. Atmos. Sci., 52, 40944127.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., S. Benson, and E. Vernon, 2006a: On the relationship between cirrus cloud occurrence and microphysical properties with the large-scale atmospheric state revealed by six years of continuous ground-based cloud radar data. J. Climate, 19, 32573278.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., and Coauthors, 2006b: Cloud radiative forcing at the ARM Climate Research Facility: Part 1. Technique, validation, and comparison to satellite-derived diagnostic quantities. J. Geophys. Res., 111, D11S90, doi:10.1029/2005JD005921.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., M. Deng, B. J. Soden, and E. Zipser, 2006c: Association of tropical cirrus in the 10–15-km layer with deep convective sources: An observational study combining millimeter radar data and satellite-derived trajectories. J. Atmos. Sci., 63, 480503.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., Q. Zhang, M. Vaughn, R. Marchand, G. Stephens, C. Trepte, and D. Winker, 2009: A description of hydrometeor layer occurrence statistics derived from the first year of merged CloudSat and CALIPSO data. J. Geophys. Res., 114, D00A26, doi:10.1029/2007JD009755.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part 1: Description and numerical tests. J. Climate, 21, 36423660.

    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., 2003: Aqua: An Earth-observing satellite mission to examine water and other climate variables. IEEE Trans. Geosci. Remote Sens., 41, 173184.

    • Search Google Scholar
    • Export Citation
  • Partain, P., 2004: CloudSat ECMWF-AUX auxiliary data process description and interface control document. Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO, 8 pp. [Available online at http://www.cloudsat.cira.colostate.edu/ICD/ECMWF-AUX/ECMWF-AUX_PDICD_3.0.pdf.]

  • Pincus, R., C. P. Batstone, R. J. P. Hofmann, K. E. Taylor, and P. J. Glecker, 2008: Evaluating the present-day simulation of clouds, precipitation, and radiation in climate models. J. Geophys. Res., 113, D14209, doi:10.1029/2007JD009334.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 21, 459473, doi:10.1109/TGRS.2002.808301.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., G. Tselioudis, A. Polak, and C. Jakob, 2005: Tropical climate described as a distribution of weather states indicated by distinct mesoscale cloud property mixtures. Geophys. Res. Lett., 32, L21812, doi:10.1029/2005GL024584.

    • Search Google Scholar
    • Export Citation
  • Sanderson, B. M., C. Piani, W. J. Ingram, D. A. Stone, and M. R. Allen, 2008: Towards constraining climate sensitivity by linear analysis of feedback patterns in thousands of perturbed-physics GCM simulations. Climate Dyn., 30, 175190.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., and J. R. Campbell, 2001: A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing: Part I: Macrophysical and synoptic properties. J. Atmos. Sci., 58, 481496.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., D. O’C. Starr, and T. Uttal, 1989: Mesoscale and microscale structure of cirrus clouds: Three case studies. J. Atmos. Sci., 46, 371396.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., Z. Wang, and D. Liu, 2008: Global distribution of cirrus clouds from CloudSat/Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements. J. Geophys. Res., 113, D00A12, doi:10.1029/2008JD009972.

    • Search Google Scholar
    • Export Citation
  • Schmetz, J., P. Pili, S. Tjemkes, D. Just, J. Kerkmann, S. Rota, and A. Ratier, 2002: An introduction to Meteosat Second Generation (MSG). Bull. Amer. Meteor. Soc., 83, 977992.

    • Search Google Scholar
    • Export Citation
  • Schwartz, M. C., and G. G. Mace, 2010: Co-occurrence statistics of tropical tropopause layer cirrus with lower cloud layers as derived from CloudSat and CALIPSO data. J. Geophys. Res., 115, D20215, doi:10.1029/2009JD012778.

    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., 1981: Frontogenesis and geostrophically forced secondary circulations in the vicinity of jet stream-frontal zone systems. J. Atmos. Sci., 38, 954972.

    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., and P. J. Kennedy, 1981: Research aircraft measurements of jet stream geostrophic and ageostrophic winds. J. Atmos. Sci., 38, 26422652.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., 1998: Tracking upper tropospheric water vapor radiances: A satellite perspective. J. Geophys. Res., 103, 17 06917 081.

  • Soden, B. J., and I. M. Held, 2006: An assessment of climate feedbacks in coupled ocean-atmosphere models. J. Climate, 19, 33543360.

  • Soden, B. J., and G. A. Vecchi, 2011: The vertical distribution of cloud feedback in coupled ocean-atmosphere models. Geophys. Res. Lett., 38, L12704, doi:10.1029/2011GL047632.

    • Search Google Scholar
    • Export Citation
  • Starr, D. O’C., and D. P. Wylie, 1990: The 27–28 October 1986 FIRE cirrus case study: Meteorology and clouds. Mon. Wea. Rev., 118, 22592287.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 2005: Cloud feedbacks in the climate system: A critical review. J. Climate, 18, 237273.

  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train. Bull. Amer. Meteor. Soc., 83, 17711790.

  • Stephens, G. L., and Coauthors, 2008: CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res., 113, D00A18, doi:10.1029/2008JD009982.

    • Search Google Scholar
    • Export Citation
  • Waliser, D., and Coauthors, 2009: Cloud ice: A climate model challenge with signs and expectations of progress. J. Geophys. Res., 114, D00A21, doi:10.1029/2008JD010015.

    • Search Google Scholar
    • Export Citation
  • Webb, M. J., and Coauthors, 2006: On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles. Climate Dyn., 27, 1738.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., and T. Meissner, 2000: AMSR Algorithm Theoretical Basis Document (ATBD) version 2, AMSR ocean algorithm. RSS Tech. Proposal 121599A-1, 59 pp.

  • Wielicki, B. A., and Coauthors, 1998: Clouds and the Earth’s Radiant Energy System (CERES): Algorithm overview. IEEE Trans. Geosci. Remote Sens., 36, 11271141.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 627 pp.

  • Williams, K. D., and G. Tselioudis, 2007: GCM intercomparison of global cloud regimes: Present-day evaluation and climate change response. Climate Dyn., 29, 231250.

    • Search Google Scholar
    • Export Citation
  • Williams, K. D., and M. J. Webb, 2009: A quantitative performance assessment of cloud regimes in climate models. Climate Dyn., 33, 141157.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., B. H. Hunt, and M. J. McGill, 2007: Initial performance assessment of CALIOP. Geophys. Res. Lett., 34, L19803, doi:10.1029/2007GL030135.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., and D. L. Hartmann, 2010: Why is longwave cloud feedback positive? J. Geophys. Res., 115, D16117, doi:10.1029/2010JD013817.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., S. A. Klein, and D. L. Hartmann, 2012: Computing and partitioning cloud feedbacks using cloud property histograms. Part I: Cloud radiative kernals. J. Climate, 25, 37153735.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and G. Mace, 2006: Retrieval of cirrus microphysical properties with a suite of algorithms for airborne and spaceborne lidar, radar and radiometer data. J. Appl. Meteor. Climatol., 45, 16651708.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., S. Klein, G. G. Mace, and J. Boyle, 2007: Cluster analysis of tropical clouds using CloudSat data. Geophys. Res. Lett., 34, L12813, doi:10.1029/2007GL029336.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 97 40 1
PDF Downloads 72 24 0

Cirrus Cloud Properties and the Large-Scale Meteorological Environment: Relationships Derived from A-Train and NCEP–NCAR Reanalysis Data

View More View Less
  • 1 University of Utah, Salt Lake City, Utah
Restricted access

Abstract

Empirical knowledge of how cirrus cloud properties are coupled with the large-scale meteorological environment is a prerequisite for understanding the role of microphysical processes in the life cycle of cirrus cloud systems. Using active and passive remote sensing data from the A-Train, relationships between cirrus cloud properties and the large-scale dynamics are examined. Mesoscale cirrus events from along the A-Train track from 1 yr of data are sorted on the basis of vertical distributions of radar reflectivity and on large-scale meteorological parameters derived from the NCEP–NCAR reanalysis using a K-means cluster-analysis algorithm. With these defined regimes, the authors examine two questions: Given a cirrus cloud type defined by cloud properties, what are the large-scale dynamics? Vice versa, what cirrus cloud properties tend to emerge from large-scale dynamics regimes that tend to form cirrus? From the answers to these questions, the links between the large-scale dynamics regimes and the genre of cirrus that evolve within these regimes are identified. It is found that, to a considerable extent, the large-scale environment determines the bulk cirrus properties and that, within the dynamics regimes, cirrus cloud systems tend to evolve through life cycles, the details of which are not necessarily explained by the large-scale motions alone. These results suggest that, while simple relationships may be used to parameterize the gross properties of cirrus, more sophisticated parameterizations are required for representing the detailed structure and radiative feedbacks of these clouds.

Corresponding author address: Professor Gerald G. Mace, Department of Atmospheric Science, University of Utah, 135 S 1460 E, Rm. 819 (WBB), Salt Lake City, UT 84112-0110. E-mail: jay.mace@utah.edu

Abstract

Empirical knowledge of how cirrus cloud properties are coupled with the large-scale meteorological environment is a prerequisite for understanding the role of microphysical processes in the life cycle of cirrus cloud systems. Using active and passive remote sensing data from the A-Train, relationships between cirrus cloud properties and the large-scale dynamics are examined. Mesoscale cirrus events from along the A-Train track from 1 yr of data are sorted on the basis of vertical distributions of radar reflectivity and on large-scale meteorological parameters derived from the NCEP–NCAR reanalysis using a K-means cluster-analysis algorithm. With these defined regimes, the authors examine two questions: Given a cirrus cloud type defined by cloud properties, what are the large-scale dynamics? Vice versa, what cirrus cloud properties tend to emerge from large-scale dynamics regimes that tend to form cirrus? From the answers to these questions, the links between the large-scale dynamics regimes and the genre of cirrus that evolve within these regimes are identified. It is found that, to a considerable extent, the large-scale environment determines the bulk cirrus properties and that, within the dynamics regimes, cirrus cloud systems tend to evolve through life cycles, the details of which are not necessarily explained by the large-scale motions alone. These results suggest that, while simple relationships may be used to parameterize the gross properties of cirrus, more sophisticated parameterizations are required for representing the detailed structure and radiative feedbacks of these clouds.

Corresponding author address: Professor Gerald G. Mace, Department of Atmospheric Science, University of Utah, 135 S 1460 E, Rm. 819 (WBB), Salt Lake City, UT 84112-0110. E-mail: jay.mace@utah.edu
Save