• Bennartz, R., 2007: Global assessment of marine boundary layer cloud droplet number concentration from satellite. J. Geophys. Res., 112, D02201, doi:10.1029/2006JD007547.

    • Search Google Scholar
    • Export Citation
  • Chan, A. C., and J. C. Comiso, 2011: Cloud features detected by MODIS but not by CloudSat and CALIOP. Geophys. Res. Lett., 38, L24813, doi:10.1029/2011GL050063.

    • Search Google Scholar
    • Export Citation
  • Cho, H.-M., S. L. Nasiri, and P. Yang, 2009: Application of CALIOP measurements to the evaluation of cloud phase derived from MODIS infrared channels. J. Appl. Meteor. Climatol., 48, 21692180.

    • Search Google Scholar
    • Export Citation
  • Chubb, T. H., S. T. Siems, and M. J. Manton, 2011: On the decline of wintertime precipitation in the Snowy Mountains of southeast Australia. J. Hydrometeor., 12, 14831497.

    • Search Google Scholar
    • Export Citation
  • Delanoe, J., and R. J. Hogan, 2010: Combined CloudSatCALIPSO–MODIS retrievals of the properties of ice clouds. Geophys. Res. Lett., 115, D00H29, doi:10.1029/2009JD012346.

    • Search Google Scholar
    • Export Citation
  • Deshler, T., and D. W. Reynolds, 1990: The persistence of seeding effects in a winter orographic cloud seeded with silver iodide burned in acetone. J. Appl. Meteor., 29, 477488.

    • Search Google Scholar
    • Export Citation
  • Deshler, T., D. W. Reynolds, and A. W. Huggins, 1990: Physical response of winter orographic clouds over the Sierra Nevada to airborne seeding using dry ice or silver iodide. J. Appl. Meteor., 29, 288330.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., Q. Miao, Y. Yang, R. Rasmussen, and D. Breed, 2010: An airborne profiling radar study of the impact of glaciogenic cloud seeding on snowfall from winter orographic clouds. J. Atmos. Sci., 67, 32863302.

    • Search Google Scholar
    • Export Citation
  • Guan, H., S. G. Cober, and G. A. Isaac, 2001: Verification of supercooled cloud forecasts with in situ aircraft measurements. Wea. Forecasting, 16, 145155.

    • Search Google Scholar
    • Export Citation
  • Guan, H., S. G. Cober, G. A. Isaac, A. Tremblay, and A. Methot, 2002: Comparison of three cloud forecast schemes with in situ aircraft measurements. Wea. Forecasting, 17, 12261235.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., M. D. Behera, E. J. Oconner, and A. J. Illingworth, 2004: Estimate of the global distribution of stratiform supercooled liquid water clouds using the LITE lidar. Geophys. Res. Lett., 31, L05106, doi:10.1029/2003GL018977.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., S. Rodier, K. Xu, W. Sun, J. Huang, B. Lin, P. Zhai, and D. Josset, 2010: Occurrence, liquid water content, and fraction of supercooled water clouds from combined CALIOP/IIR/MODIS measurements. J. Geophys. Res., 115, D00H34, doi:10.1029/2009JD012384.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., S. T. Siems, M. J. Manton, A. Protat, and J. Delanoë, 2012: A study on the low-altitude clouds over the Southern Ocean using the DARDAR-MASK. J. Geophys. Res., 117, D18204, doi:10.1029/2012JD017800.

    • Search Google Scholar
    • Export Citation
  • Jensen, J. B., S. Lee, P. B. Krummel, J. Katzfey, and D. Gogoasa, 2000: Precipitation in marine cumulus and stratocumulus. Part 1: Thermodynamic and dynamic observations of closed cell circulations and cumulus bands. Atmos. Res., 54, 117155.

    • Search Google Scholar
    • Export Citation
  • Long, A. B., and A. W. Huggins, 1992: Australian Winter Storms Experiment (AWSE) I: Supercooled liquid water and precipitation-enhancement opportunities. J. Appl. Meteor., 31, 10411055.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., R. Marchand, Q. Zhang, and G. Stephens, 2007: Global hydrometeor occurrence as observed by CloudSat: Initial observations from summer 2006. Geophys. Res. Lett., 34, L09808, doi:10.1029/2006GL029017.

    • Search Google Scholar
    • Export Citation
  • Manton, M. J., and L. Warren, 2011: A confirmatory snowfall enhancement project in the Snowy Mountains of Australia. Part II: Primary and associated analyses. J. Appl. Meteor. Climatol., 50, 14481458.

    • Search Google Scholar
    • Export Citation
  • Manton, M. J., L. Warren, S. L. Kenyon, A. D. Peace, S. P. Bilish, and K. Kemsley, 2011: A confirmatory snowfall enhancement project in the Snowy Mountains of Australia. Part I: Project design and response variables. J. Appl. Meteor. Climatol., 50, 14321447.

    • Search Google Scholar
    • Export Citation
  • Mielke, P. W., Jr., G. W. Brier, L. O. Grant, G. J. Mulvey, and P. N. Rosensweig, 1981: A statistical reanalysis of the replicated Climax I and II wintertime orographic cloud seeding experiments. J. Appl. Meteor., 20, 643660.

    • Search Google Scholar
    • Export Citation
  • Morrison, A. E., S. T. Siems, M. J. Manton, and A. Nazarov, 2009: On the analysis of a cloud seeding dataset over Tasmania. J. Appl. Meteor. Climatol., 48, 12671280.

    • Search Google Scholar
    • Export Citation
  • Morrison, A. E., S. T. Siems, M. J. Manton, and A. Nazarov, 2010: A modeling case study of mixed-phase clouds over the Southern Ocean and Tasmania. Mon. Wea. Rev., 138, 839862.

    • Search Google Scholar
    • Export Citation
  • Morrison, A. E., S. T. Siems, and M. J. Manton, 2011: A three-year climatology of cloud-top phase over the Southern Ocean and North Pacific. J. Climate, 24, 24052418.

    • Search Google Scholar
    • Export Citation
  • Mossop, S. C., A. Ono, and E. R. Wishart, 1970: Ice particles in maritime clouds near Tasmania. Quart. J. Roy. Meteor. Soc., 96, 487508.

    • Search Google Scholar
    • Export Citation
  • Nasiri, S. L., and B. H. Kahn, 2008: Limitations of bispectral infrared cloud phase determination and potential for improvement. J. Appl. Meteor. Climatol., 47, 28952910.

    • Search Google Scholar
    • Export Citation
  • NRC, 2003: Critical Issues in Weather Modification Research. National Research Council, 144 pp.

  • Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedei, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41, 459473.

    • Search Google Scholar
    • Export Citation
  • Pook, M. J., P. C. McIntosh, and G. A. Meyers, 2006: The synoptic decomposition of cool-season rainfall in the southeastern Australian cropping region. J. Appl. Meteor. Climatol., 45, 11561170.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and L. O. Grant, 1987: Supercooled liquid water structure of a shallow orographic cloud system in southern Utah. J. Appl. Meteor., 26, 208215.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and A. Tokay, 1991: An explanation for the existence of supercooled water at the top of cold clouds. J. Atmos. Sci., 48, 10051023.

    • Search Google Scholar
    • Export Citation
  • Russell, M. L., D. H. Lenschow, K. K. Laursen, P. B. Krummel, S. T. Siems, A. R. Bandy, D. C. Thornton, and T. S. Bates, 1998: Bidirectional mixing in an ACE 1 marine boundary layer overlain by a second turbulent layer. J. Geophys. Res., 103, 16 41116 432.

    • Search Google Scholar
    • Export Citation
  • Ryan, B. F., and W. D. King, 1997: A critical review of the Australian experience in cloud seeding. Bull. Amer. Meteor. Soc., 78, 239254.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., and K. Keay, 2000: Mean Southern Hemisphere extratropical cyclone behavior in the 40-year NCEP–NCAR reanalysis. J. Climate, 13, 873885.

    • Search Google Scholar
    • Export Citation
  • Smith, E. J., E. E. Adderley, and D. Walsh, 1963: A cloud-seeding experiment in the Snowy Mountains. J. Appl. Meteor., 2, 324332.

  • Smith, E. J., L. G. Veitch, D. E. Shaw, and A. J. Miller, 1979: A cloud-seeding experiment in Tasmania. J. Appl. Meteor., 18, 804815.

    • Search Google Scholar
    • Export Citation
  • Stoelinga, M. T., and Coauthors, 2003: Improvement of Microphysical Parameterization through Observational Verification Experiment. Bull. Amer. Meteor. Soc., 84, 18071826.

    • Search Google Scholar
    • Export Citation
  • Super, A. B., and J. A. Heimbach, 1983: Evaluation of the Bridger Range winter cloud seeding experiment using control gages. J. Climate Appl. Meteor., 22, 19892011.

    • Search Google Scholar
    • Export Citation
  • Vaillancourt, P. A., A. Tremblay, S. G. Cober, and G. A. Isaac, 2003: Comparison of aircraft observations with mixed-phase cloud simulations. Mon. Wea. Rev., 131, 656671.

    • Search Google Scholar
    • Export Citation
  • Wang, Q., and Coauthors, 1999: Characteristics of the marine boundary layers observed during Lagrangian measurements. Part I: General conditions and mean characteristics. J. Geophys. Res., 104, 21 75121 766.

    • Search Google Scholar
    • Export Citation
  • Winkler, D. H., B. H. Hunt, and M. J. McGill, 2007: Initial performance assessment of CALIOP. Geophys. Res. Lett., 34, L19803, doi:10.1029/2007/GL030135.

    • Search Google Scholar
    • Export Citation
  • Yum, S. S., and J. G. Hudson, 2005: Adiabatic predictions and observations of cloud droplet spectral broadness. Atmos. Res., 73, 203223.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 226 122 10
PDF Downloads 212 117 14

On a Natural Environment for Glaciogenic Cloud Seeding

View More View Less
  • 1 Weather and Climate, Monash University, Melbourne, Australia
Restricted access

Abstract

A “climatology” of supercooled cloud tops is presented for southeastern Australia and the western United States, where historic glaciogenic cloud-seeding trials have been located. The climatology finds that supercooled cloud tops are common over the mountainous region of southeastern Australia and Tasmania (SEAT). Regions where cloud-seeding trials reported positive results coincide with a higher likelihood of observing supercooled cloud tops. Maximum absolute frequencies (AFs) occur ∼40% of the time during winter. There is a relationship between the underlying orography and the likelihood of observing supercooled liquid water (SLW)-topped clouds. Regions of the United States that have been the subject of cloud-seeding trials show lower AFs of SLW-topped clouds. The maximum is located over the Sierra Nevada and occurs ∼20% of the time during winter (Sierra Cooperative Pilot Project). These sites are on mountains with peaks higher than any found in SEAT (>3000 m). For the Sierra Nevada, the AF of SLW-topped clouds decreases as the elevation increases, with glaciation occurring at the higher elevations. The remote sensing of supercooled cloud tops is not proof of a region’s amenability for glaciogenic cloud seeding. This study simply highlights the significant environmental differences between historical cloud-seeding regions in the United States and Australia, suggesting that it is not reasonable to extrapolate results from one region to another. Without in situ cloud microphysical measurements, in-depth knowledge of the timing and duration of potentially seedable events, or knowledge of the synoptic forcing of such events, it is not possible to categorize a region’s potential for precipitation augmentation operations.

Corresponding author address: Anthony Morrison, Weather and Climate, Monash University, Wellington Rd., Clayton, Melbourne, VIC 3800, Australia. E-mail: anthony.e.morrison@gmail.com

Abstract

A “climatology” of supercooled cloud tops is presented for southeastern Australia and the western United States, where historic glaciogenic cloud-seeding trials have been located. The climatology finds that supercooled cloud tops are common over the mountainous region of southeastern Australia and Tasmania (SEAT). Regions where cloud-seeding trials reported positive results coincide with a higher likelihood of observing supercooled cloud tops. Maximum absolute frequencies (AFs) occur ∼40% of the time during winter. There is a relationship between the underlying orography and the likelihood of observing supercooled liquid water (SLW)-topped clouds. Regions of the United States that have been the subject of cloud-seeding trials show lower AFs of SLW-topped clouds. The maximum is located over the Sierra Nevada and occurs ∼20% of the time during winter (Sierra Cooperative Pilot Project). These sites are on mountains with peaks higher than any found in SEAT (>3000 m). For the Sierra Nevada, the AF of SLW-topped clouds decreases as the elevation increases, with glaciation occurring at the higher elevations. The remote sensing of supercooled cloud tops is not proof of a region’s amenability for glaciogenic cloud seeding. This study simply highlights the significant environmental differences between historical cloud-seeding regions in the United States and Australia, suggesting that it is not reasonable to extrapolate results from one region to another. Without in situ cloud microphysical measurements, in-depth knowledge of the timing and duration of potentially seedable events, or knowledge of the synoptic forcing of such events, it is not possible to categorize a region’s potential for precipitation augmentation operations.

Corresponding author address: Anthony Morrison, Weather and Climate, Monash University, Wellington Rd., Clayton, Melbourne, VIC 3800, Australia. E-mail: anthony.e.morrison@gmail.com
Save